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Methodology
Shasta County, our AOI, has the typical California Mediterranean climate: warm, dry summers
and cold, wet winters, with an average annual precipitation of around 165 cm (United States
Climate Data, 2022; Kauffman et al., 2003). It has also suffered from a large amount of forest
fires in the past 12 years (California Department of Forestry and Fire Protection, 2022).
We used Google Earth Engine and University of Idaho Gridded Surface Meteorological Dataset
(GRIDMET), Daily Spatial Climate Dataset (PRISM), NDVI values from MODIS Terra Daily NDVI
Dataset provided by Google, and MOD14A1.006 to acquire ecological datasets. Culex pipiens
and Culex tarsalis from gravid and CO2 trap abundance data for this study were provided by
Shasta MVCD. All data were acquired across our weekly time frame from 2010-01-13 to 2022-07-
10 as determined by EPI. All-time GLOBE Land Cover data was also acquired for Shasta County.

How significant is forest fire data for predicting mosquito abundance?
What features or feature variations are most useful for predicting
mosquito abundance, and in what way does each feature contribute
to the model?
What machine learning techniques can be used to create an accurate
model of mosquito abundance?
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Mosquitos carry many deadly diseases, including malaria, dengue
fever, yellow fever, and West Nile virus, which kill hundreds of
thousands of people each year (World Health Organization [WHO],
2020). Drought exacerbated by climate change combined with fire
suppression practices resulted in record numbers of severe forest fires;
counterintuitively, fire suppression encourages the expansion of
coniferous tree forests, which are densely packed and highly
flammable, into historically non-forested areas, thus increasing the
frequency, range, and severity of forest fires (NASA Earth Observatory,
2022; United States Department of Agriculture [USDA] Forest Service,
2016; Alberta Government 2012). By exploring the relationship between
forest fires and mosquitoes, our study takes a step into understanding
how mosquitos are being affected by a transforming environment.
Machine learning is widely used to predict mosquito abundance
because it can perform highly accurate predictions on large amounts of
data in a timely fashion. In particular, the powerful random forest
method can predict variable significance and has the ability to model
complex relationships between variables (Cutler et al., 2007). Rainfall,
specific humidity, NDVI, and temperature are critical factors in
determining mosquito abundance (Madzokere et al., 2020; Kofidou et
al., 2021; Arora et al., 2022). Thus, we decided on these four ecological
factors for the two base abundance models, and we added the novel
factor, burn area, to one of our models. We then compared the random
forest regression models to determine the importance of fire data on
mosquito abundance predictions.

Mosquitoes have been a major health concern for decades, and with climate
change expanding their habitat, their threat to public health is increasing. In
response, mosquito abundance prediction machine learning models have been
researched in numerous locations. Our research builds on this and seeks to
explore novel methods such as using natural disaster data, optimizing
hyperparameters through Bayesian Search, and inspecting models using Partial
Dependence (PDP) and Individual Condition Expectation (ICE) plots. Based on
previous work, we selected four base ecological variables. We then acquired
variations of these base variables and assessed their effectiveness by training
Random Forest Regressors (RFR) using the variable’s variations instead of the
base variable. Out of all the variations, only minimum daily temperature proved
better than its base variable (mean daily temperature). Our final model used the
best variable variations and our custom forest fire index. We optimized our models
using Bayesian Search, which we found to be more effective than Grid Search.
Our final RFR model had a root mean squared error (RMSE) of 3.94 when
predicting the test set. To see whether forest fire index had any impact on
accuracy, we used drop variable importance, the purest way of calculating variable
importance. We found that forest fire marginally increased accuracy, which is best
case scenario for rare-occurrence data, where most of the values are 0. Using
PDP and ICE plots, we found that our model was able to synthesize accurate
relationships between variables like temperature and mosquito abundance that
reflect field and lab findings. Further research should be done on machine learning
inspection and its use cases. Within mosquito research, further work can explore
other novel datasets that form a more comprehensive understanding of mosquito
abundance.

Figure 2 shows every feature plotted over all years. It is clear that precipitation mostly happens in Shasta’s winter months. This
is crucial because most mosquito abundance models rely heavily on short-term precipitation since it creates oviposition
habitats, but in our case precipitation does not line up with the summer months when mosquitos are active, making it far less
useful than usual (Cleckner HL et al., 2011). Fire one has one sharp peak at around week 30 of 2018, which is the largest and
most severe fire in our time frame, the 2018 Carr Fire. Apart from precipitation and fire, the other features seem to be as
expected, with temperature, humidity, NDVI, and mosquito abundance all peaking moderately simultaneously.
The features in Figure 2 are from the daily mean datasets of each feature, but previous studies have found variations like the
daily minimum or maximum to be more helpful (Lee KY et al, 2017). However, we only found minimum temperature to be
useful the only useful variation, and relative humidity did not work for our model.

Data Statistics

Finding Optimal Lag

There is significant precedence of feature lag among mosquito abundance models since the impact of an event will likely not affect
adult mosquito populations till a few weeks later. Chang et al. (2016) discussed how feature lag times will differ under different
climates, so instead of using previous lag values, we decided to find our own. Table 2 shows the results of Figure 5, with the best
correlation coefficient achieved for each feature and how many weeks created that correlation. We decided to use the absolute
correlation coefficient since negative or positive correlation does not matter to machine learning algorithms, as long as it is strong.
Every feature’s highest absolute correlation was with 0 weeks of lag except specific humidity, which performed best with 3 weeks of
lag. Therefore, the first three weeks had to be cut from the timeframe, making it from 1/24/2010 - 7/10/2022. 

There is significant precedence of feature lag among mosquito abundance
models since the impact of an event will likely not affect adult mosquito
populations till a few weeks later. Chang et al. (2016) discussed how
feature lag times will differ under different climates, so instead of using
previous lag values, we decided to find our own. Table 2 shows the results
of Figure 5, with the best correlation coefficient achieved for each feature
and how many weeks created that correlation.

Feature Optimization
We trained RFR models using different
combinations of features to select the best ones
instead of using RF variable importances or
trying each feature in linear models like past
research has done (Belgiu & Dragut, 2016;
Schneider et al., 2021). Table 6 shows the
results of these trials with different variations of
features. 
The Base model was fitted with the base dataset (Temp, Hum, Precip, NDVI), and for all the other models, whatever the model is
named is the tested variation. The final model uses (Temp_Min, Hum, Precip, NDVI, Fire) because Temp_Min performed the best out
of the three temperature variations, barely edging out the Base model.

Model Performance

Overall performance is very good, beating out Schneider’s RFR RMSE of 7.48 by a significant margin (Schneider et al., 2021). Figure
6 shows our final model’s predictions on the test set. Since the test set was stratified across years, the plot has around 20% of the
weeks from each year, so it is not showing every week continuously. It can be seen that the predictions are highly accurate, with
prediction and actual mosquito abundance peaks lining up almost every year. The model is less good at predicting exactly how high
that peak will be, which is understandable given the extreme right-skewed and outlier-prone mosquito abundance data.
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Feature Evaluation: Variable Importance, PDP, and ICE

In this study, we investigated the importance of wildfire data on mosquito populations by
programming two distinct random forest regression models, one leveraging the wildfire
data and one as a control. It was concluded that while wildfire data aids the accuracy of
the model, it was unclear how it does so. This is because our study used random forest
regression models, which is a black box model. We did uncover that while wildfire data
holds fractional importance in predicting mosquito abundance, models should continue
to emphasize factors such as temperature, humidity, and NDVI. Wildfires hold lower
significance because they are rare occurrences and have fewer data points that impact
the model’s result. Our study found interesting findings on both lag and variable choice.
Though many mosquito abundance papers used months of lag, those lag times did not
improve the accuracy of our model when we tested them, confirming that lag times vary
in different areas of the world (Wegbreit & Reisen, 2000; Poh et al., 2019; Chang et al.,
2016). While looking for meteorological variables, many models prioritized relative
humidity and precipitation for predicting mosquito abundance; however, we found that
specific humidity correlates with summer mosquito abundance better, and precipitation
was not nearly as important since it did not directly affect mosquito abundance as usual
(Drakou et al., 2020). Past literature used different variations of temperature, but
mosquitoes requiring a minimum temperature to function made the most sense for our
model through testing (Arora et al., 2022; Reisen et al., 2008). Thus, future mosquito
abundance models should focus on testing for their own lag times and variable
importance since they are not universally similar. We also took a different approach to
trap types. Many papers used New Jersey Light traps (NJLT), which use light to attract
mosquitoes and kill them with poison, for mosquito abundance counts; however, we
chose gravid and CO2 traps, which mimic natural conditions, something we encourage
future papers to do so as well, especially if the focus is on  natural disasters, such as
wildfires.

Hyperparameter Optimization
To train the models, we first compared three different hyper-parameter (HP) optimization techniques. The first is for control purposes:
it uses the default values of SKL’s Random Forest Regressor (RFR); the second is Grid Search (SKL’s Grid Search Cross Validation),
which brute force tries every combination of the HPs given to it, making it very inefficient but effective if given enough time; the third is
Bayesian Search, which is similar to Random Search, but instead of using completely randomized HPs, it guesses what will be the
best HPs based on past trials and uses that for its next trial. It does this by creating a model of how well the actual model will do based
on what HPs are set. Bayesian Search is significantly faster and can achieve better results than Grid Search because it makes
informed decisions and improves upon itself (Wu et al., 2019; Snoek et al., 2012).

 To control for the difference in effectiveness of the three optimization methods, we fitted them on the same dataset: base dataset
(Temp, Hum, Precip, NDVI), without any special variations (min/max) on any of the features. The results are shown in Table 3 below
using the metrics: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). Results are as
expected, with Bayesian Search being the best, then Grid Search, and then no optimization.

The tables below show hyperparameter optimization results. We chose to optimize “n_estimators,” “max_features,” and “max_samples”
because they are the most basic and commonly optimized HPs of RFR (Snoek et al,. 2012). We then chose “min_samples_leaf,”
“max_depth,” and "max_leaf_nodes" because they make each tree less specific and increase overall variance, which helps prevent
overfitting. Square brackets denote discrete choices and parenthesis denote ranges.

In summary, our final model predicts mosquito abundance in Shasta County, CA with
remarkable accuracy. However, unlike previous papers, our model cannot be used for
prediction since most features do not have any lag (Schneider et al., 2021). Therefore, it
has no immediate public health applications. Due to this, our contribution to machine
learning and mosquito research is more through our methods than our final model. We
show that feature variations like Specific Humidity and Minimum Temperature perform the
best in climates like Shasta, which has wet winters and dry summers. Going forward we
suggest research into feature variations for every mosquito abundance model because
optimal feature variation changes based on AOI. We also evaluated optimization
techniques like Grid Search and Bayesian Search and found that in a practical application,
Bayesian Search reflects its theoretical effectiveness and was the best HP optimization
technique. We believe the results are sound enough that Bayesian Search should be
proposed as the HP optimization technique for any future mosquito abundance model
research. 
Apart from model building, our research also provides insight into model inspection and
interpretation. Further research should be done in this direction because our research
proves machine learning can be a supplement to observational and experimental findings. 

From Table 8 it can be seen that Temp_Min is by far the most important feature, causing a large
increase in RMSE when not used to train the model. Precipitation and NDVI are also very
important. Humidity, Precipitation, and NDVI are all judged to be fairly important. This means the
model may have found a nonlinear relationship between Precipitation and Mosquito Abundance,
because when looking at linear correlations, Precipitation performed poorly. Fire is found least
important, however, it is still worthwhile to note that it does improve accuracy when used, even if
not by a large amount. On top of that, Fire is a rare-occurance dataset, meaning the model will not
get to use it very often, since most values are 0s.

While variable importance is useful for evaluating features, it is ultimately limited and does not say anything about how the feature
contributes to the model. To find out how each feature contributes, we used Partial Dependence Plots (PDP) and Individual
Condition Expectation (ICE) plots. These are model-agnostic machine learning inspection techniques, meaning they can be used on
any model. We chose these techniques because Random Forest is mostly considered a “black box” model, meaning it cannot be
inspected directly like a decision tree for example (Molnar, 2022). Figure 8 shows PDP and ICE plots for every feature in the final
model.
The plots show how the model reacts when a feature changes, with various values of the feature on the top x-axis, and predicted
mosquito abundance on the y-axis. Each ICE blue line shows what the model would predict for that sample if all other features are
kept as is, and the feature in question is changed. It is like looking into the "black box" and seeing what kinds of relationships the
model was able to synthesize from the data (Molnar, 2022).
Clear numerical conclusions can be reached for Temperature and NDVI. The Temperature plot shows that mosquito abundance
begins rising at around 2 ℃, but that the optimal minimum daily temperature for mosquitoes is likely around 15 ℃, which reflects
mosquito literature: Ciota et al. (2014) found the highest proportions of blood-fed Culex mosquitoes laying eggs at the 16-28 ℃
range. The NDVI plot clearly shows that at very high values, 0.6 and above, mosquito abundance drastically increases. This is likely
because high NDVI values represent leafy, green, lush vegetation that can provide necessary shade for mosquito oviposition.
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