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Abstract

Urban Heat Islands (UHIs) significantly impact urban environments such as Austin, Texas,
particularly among socioeconomically disadvantaged communities. Due to tightly packed
housing, low-income areas typically have less vegetation and more impervious surfaces,
leading to higher land surface temperatures. Understanding the factors worsening extreme
heat events is crucial to protect those affected, especially as climate change exacerbates
UHIs.

We focused on household income, percent greenness, and impervious surfaces as variables to
answer these research questions:

1. What factors contributed to an increase in land surface temperature the most?
2. How do these variables correlate in the context of Austin, TX?

We analyzed land cover for twelve areas of interest (AOIs) created by NASA SEES interns
from 2022-2024. Each AOI, arranged in a 9km² grid, contained 37 coordinates. From the 444
resulting points, we derived greenness and impervious surface percentages (Collect Earth
Online), income data (U.S. Census), and land surface temperature (ECOSTRESS via
APPEEARS). We validated the impervious surface and greenness percentages using GLOBE
Observer ground photos. Preliminary analysis revealed a significant correlation (p=0.002)
between socioeconomic disparities and impervious surfaces, with lower-income areas having
more impervious surfaces and higher UHI risk.



We applied unsupervised learning algorithms to identify trends in our data, fitting K-means,
Hierarchical, and DBSCAN clustering models. These models grouped data points by similar
land cover and income features. We analyzed cluster patterns and determined the optimal
number of clusters using Silhouette and Davies-Bouldin indexes, resulting in two clusters for
K-means, three for Hierarchical, and five for DBSCAN. K-Means corroborated that our
hypothesis was accurate; communities at the highest risk for UHIs have 61% less vegetation
and 48% lower income than those at low risk.

Next, we plan to combine our methods with Supervised Learning in California to analyze a
wider range of data and create more accurate correlations.

Key Words: Urban Heat Islands, Remote Sensing, Socioeconomic Data, Unsupervised
Learning, GLOBE Observer, Citizen Science

Research Questions
1. What are the primary factors contributing to increased risk of urban heat islands

(UHIs) in socioeconomically disadvantaged areas of Austin, Texas?
a. Identifying key contributors to higher land surface temperatures in

lower-income areas addresses local environmental justice issues. This is
important for developing targeted mitigation strategies.

b. These environmental justice issues in Austin, Texas can be applied to other
urban areas in order to analyze contributors to UHIs and climate change across
the world.

2. To what extent do these primary variables correlate with each other?
a. Identifying correlations between variables provides insight into which

variables, if any, are most responsible for generating extreme heat.
3. Out of the twelve areas of interest (AOIs) in Austin, Texas we gathered data from,

which ones are most likely to be affected by urban heat islands based on these
correlations?

a. Understanding which AOIs are at the highest risk for the UHI effect allows for
local initiatives to be made providing targeted relief for those affected.
Additionally, mapping out these high-risk areas allows city planners to
mitigate the effects of extreme heat by making use of the variables described
in the questions above (e.g. planting more vegetation, limiting impervious
surface land cover).

Introduction

As global warming and climate change intensify, urban areas are increasingly pressured to
lessen and mitigate their effects. Compared to rural areas, cities, characterized by dense
populations and developed infrastructure, typically feature less vegetation and more
impervious surfaces such as concrete and asphalt. These surfaces absorb and retain heat,
exacerbating the urban heat island effect: a phenomenon in which certain areas of urban



regions experience much higher temperatures than rural environments. This effect is caused
by high concentrations of vehicles, machinery, and other sources of greenhouse gasses and
fossil fuels, contributing significantly to atmospheric warming and the formation of urban
heat islands in large cities. The urban heat island effect has the potential to become severe if
left unchecked by cities. NASA Applied Sciences warns, “The rapid growth of urban
populations, the urban heat island effect, and increase in the frequency and duration of heat
waves due to climate change, raise a series of issues about the increased health risks of
sensitive urban populations to extreme heat and the effective means of mitigating the impacts
of heat waves.” (ARSET, 2022) In addition, increased land surface temperatures may affect
unexpected areas of urban infrastructure: material and energy flow, water quality, soil quality,
and biological habits could all be subject. (Li Yang et al, 2016) Extreme heat in cities not
only harm the health of the environment, but also of the citizens living there, meaning that
sustainable solutions must be addressed in order to maintain healthy communities.

In this research, our team will attempt to investigate the most significant driving factors
behind the formation of urban heat islands (UHIs) in the urban city of Austin, Texas and
analyze the correlations between these factors using unsupervised learning algorithms in
order to inform further environmental justice applications. We decided to focus on four
distinct variables in our analysis. Firstly, we investigated percentages of greenness and
impervious surfaces across our area of study. These two factors are already known
contributors to the UHI effect, and literature suggests that low amounts of vegetation and
high amounts of impervious surfaces worsen the effects of extreme heat due to impervious
surfaces’ absorption and retaining of the sun’s radiation (Climate). Therefore, we expect to
see similar patterns in our analysis. The next variable we focused on is land surface
temperature, which will allow us to analyze specific temperature changes over time and
identify possible UHIs. Finally, we chose to use median household income as an additional
variable in order to connect our study of urban heat islands to environmental justice and
identify any correlations between wealth and susceptibility to extreme heat events. If there
are any locations in our study area with low household income but a high risk for urban heat
islands, the people living there may not be as well equipped to handle the effects of these
high temperatures. In summary, by identifying areas with land cover features that correspond
to high land surface temperatures, we can evaluate the risk that area has for the formation of
urban heat islands. Then, we will be able to combine that risk factor with the area’s median
household income, allowing us to inform possible environmental justice initiatives to better
prepare the population of the area to withstand extreme urban heat or even work to minimize
the effects of urban heat.

The increasingly prevalent challenge of urban heat islands calls for comprehensive research
to inform effective mitigation strategies. By analyzing key factors contributing to UHIs in
Austin, Texas, this study aims to provide actionable insights that can enhance urban
populations’ resilience to climate change. Our findings will not only advance scientific
understanding but also support cities’ and communities’ efforts to create healthier, more
sustainable urban environments.



Methods and Materials

Choosing and Analyzing an Area of Study
Before choosing our area of study, we had to make sure there would be enough data for our
regression analysis available to us. By looking at a map of all of the AOIs in the GLOBE
Observer land cover database from 2022 to 2024, we noticed that there is an abundance of
data in Austin, Texas from previous and current NASA SEES interns. This abundance of data
combined with the fact that Texas - and by extension, the city of Austin - is an extremely
ecologically and socioeconomically diverse state led to us choosing it as our primary area of
study.

Fig. 1: A map of the ecoregions and major cities of the state of Texas, courtesy of Texas
Highways via
https://texashighways.com/outdoors/wildflowers/the-wildflower-regions-and-vegetational-are
as-of-texas/ .

Austin, Texas is located between the natural regions of the Blackland Prairies and the
Edwards Plateau. Because of its close proximity to multiple different ecoregions, the ecology

https://texashighways.com/outdoors/wildflowers/the-wildflower-regions-and-vegetational-areas-of-texas/
https://texashighways.com/outdoors/wildflowers/the-wildflower-regions-and-vegetational-areas-of-texas/


and climate of Austin vary. However, Austin is also located in the area of central Texas
known as the Texas Hill Country, which is characterized by shallow soil, hills and caves
made primarily of limestone, grassland, mesquite savannah, and temperate juniper or oak
woodlands (Texas, 2022). Additionally, the city of Austin contained a population of roughly
958,000 people in 2022 and had an average median yearly income of about $86,500 (Austin).

We found fourteen total AOIs in Austin between 2022 and 2024; however, two were deemed
unreliable due to missing land cover data, leaving us with a total of 12 AOIs with 37 data
points inside each to work with. Additionally, each of the 37 points in an AOI are further
subdivided into a 10x10 grid, creating 100 secondary points, which were then labeled using
land cover descriptors in Collect Earth Online (Fig. 2). Using these secondary points, we are
able to get the exact percentages of impervious surfaces and greenness (tree canopy cover,
grass, and bush added together) and coordinates for each AOI point.

Fig. 2: A screenshot of an AOI point in Austin, Texas being labeled using Collect Earth
Online’s land cover description system. The screen is made up of a 10x10 point grid overlaid
on a satellite map with red points representing impervious surfaces and green points
representing any tree cover or grass.

Fig. 3: The 14 total AOIs found in the Austin, Texas
area visualized in an ArcGIS map and numbered. Note
that two of these AOIs were not included in the final
correlation analysis because of poor data quality from
Collect Earth Online.

Data Extraction



As a part of our data analysis, we extracted a .csv file of the coordinates, dates and times of
measurements, GLOBE Observer user IDs, and percentages of impervious surfaces, tree
cover, grass, and shrubbery of all 37 points per each of the 14 AOIs that we observed in
Austin from the GLOBE Observer database. After downloading this file, we uploaded it into
a webmap in the geographic information system ArcGIS Online in order to layer all of our
data files into one large, visual dataset. Next, we requested land surface temperature (LST)
data and their corresponding quality checkers through NASA AppEEARS for the same group
of points. We sourced our LST data from the ECOSTRESS instrument aboard the
International Space Station and chose to collect data daily between 2022 and 2024. All of our
LST data was also exported as one .csv file and imported into the ArcGIS web map. After
importing the LST data, it was filtered using the quality checkers requested from AppEEARS
to limit the dataset to only data points that were deemed good quality.

The income data was accessed from a 2011-2015 ACS 5-year documentation provided by
U.S Census Reports from Kaggle. As shown, these incomes were converted to discrete
variables over certain ranges:

This data was filtered to only include areas within Austin. For each income location, the
dataset included mean, median and standard deviations of income. Using each of the fourteen
AOIs, we mapped each one to the nearest known household income. In order to do this, we
utilized the geodisc library which calculates this using the Vincenity formula, which is
included in the “Data Availability” section of this report.

To analyze the possibility of error when using Vincenity, we also calculated the distances
between these locations and made sure that they matched what we saw on a satellite map.
After applying this, we generated a heatmap showing all of the median incomes in our AOI
locations, with yellow representing lower income and red representing higher income:



Fig. 4: a screenshot from an OpenStreetMap satellite map displaying a heatmap scale from
yellow to red of median household incomes across fourteen AOIs in Austin, Texas.

Data Processing
After having the complete dataset, we started to preprocess the data. We selected the
following columns to analyze within our data: longitude, latitude, grass, impervious surfaces
(not including buildings), tree canopy cover, bush/scrub, median income, and average
income. We then summed tree canopy cover, bush/scrub, and grass into one variable called
vegetation to get the percentage of greenness within a city. We also dropped any columns that
had missing data (with the exception of analysis for correlations, in which case columns
would only be dropped if the columns being compared were missing data). After cleaning the
data, we had a total of 444 rows of data representing 444 coordinates in Austin. We then
preprocessed and normalized the data by importing StandardScaler from
sklearn.preprocessing. Normalizing the data allows all of the values to scale so the machine
learning algorithms can run effectively. We then visualized the frequency distributions of
income as well as that of the vegetation and impervious surface data using SeaBorn and
Matplotlib

Fig. 5: A histogram generated in Matplotlib
that visualizes the frequencies of minimum

distances, in meters, between
each of the 444 AOI points.



Fig. 6: A histogram generated in Matplotlib that visualizes the frequencies of vegetation (tree
canopy cover, bush/scrub, and grass percentages added together) percentages in each of the
444 AOI points.

Fig. 7: A histogram generated in Matplotlib that visualizes the frequencies of impervious
surface percentages in each of the 444 AOI points.

Data and Results
We performed Pearson correlation analysis to determine the relationships and statistical
significance between the correlations of the variables. To do this, we calculated the p-value
and r-value between all possible combinations of factors from scipy.stats. After calculating
the results, we identified statistically significant correlations if p < 0.05, such as income v.s.
total greeness (p = 6e-18), providing correlations and statistical significance with a 95%
confidence for all factors.



Fig 8: Table depicting correlation r and p-value between all factors. Note that median income
and greenness, median income with impervious surfaces, and greenness with impervious
surfaces are statistically significant and most likely did not occur by chance.

As noted from Fig. 8, we found 3 significant and expected correlations: median income and
greenness, median income with impervious surfaces, and greenness with impervious surface.
Median income and total greeness were weakly (r = 0.39) positively correlated, as the higher
income an area has, more efficient and green infrastructure can be developed. Median income
and impervious surfaces were very weakly (r = -0.14) negatively correlated, as with lower
wealth, less consideration is placed on urban heat. Finally, total greenness with impervious
surfaces was weakly (r = -0.28) negatively correlated, which aligns with most modern
developments, as when impervious surface use increases, greenness in the area decreases.

Fig 9: This heatmap displays the correlation r between all factors. This heatmap was created
using matplotlib.pyplot.

We tested multiple unsupervised machine learning models in order to create similar clusters
among all of our points of study, including K-means. To find the optimal number of clusters
using this model, we calculated the Silhouette score, Davies-Bouldin score, and
Calinski-Harabasz score from sklearn.metrics. We looped through a range from two to five
clusters to find the amount most effective for our analysis that leads to the lowest possibility
of error. After calculating and plotting the results, we found that two clusters would give the
most accurate results.



Fig. 10: Three charts showing three different index scores used to calculate the optimal
number of clusters. From top to bottom, they are the Silhouette Score, the Davies-Bouldin
Index, and the Calinski-Harabasz Index. These charts were created in Matplotlib.

Next, we ran a K-means algorithm on our data in order to begin determining which AOIs in
our study are at the highest risk for the urban heat island effect. As seen through the
visualization of our clustering data below, the locations of the clusters generated by K-means
line up with the wealth disparity shown in Fig. 4; the AOIs with the highest income fall into
the “low risk” cluster.

Fig. 11: A visualization generated in Matplotlib that graphs the twelve AOIs by longitude and
latitude and separates them by cluster into either low risk (shown in purple) or high risk
(shown in yellow).



Fig. 12: A bar chart generated in Matplotlib that shows the disparities between median
household income (shown in blue) and average household income (shown in orange), in US
dollars, in the low risk versus high risk clusters. This chart displays that AOIs at the highest
risk for the UHI effect have a median income roughly 44% lower and an average income
roughly 50% lower than those at low UHI risk.

Fig. 13: A bar chart generated in Matplotlib that shows the disparities between the
percentages of impervious surfaces (shown in blue) and vegetation (shown in orange) in the
low risk versus high risk clusters. This chart displays that AOIs at the highest risk for the UHI
effect contain roughly 30% less vegetation and 5% more impervious surfaces than those at
low UHI risk.



From the K-means clustering results, it is evident that there is a significant income gap within
Austin, Texas that puts low income communities at a greater risk for UHIs than those with
comparatively higher incomes. This phenomenon is made worse by the evidence that lower
income communities contain less vegetation and more impervious surfaces than those with
high income, likely due to these communities’ lack of excess wealth to build large green
spaces like parks and community centers and high amounts of tightly-packed housing units.
The results from the K-means clustering gave us a final silhouette score of 0.4456.

We also performed Density-Based Spatial Clustering of Applications with Noise, optimal for
real world data. Using the Silhouette Score as the benchmark, we iterated through different
combinations of minimum points required for each cluster and maximum distance (epsilon)
between points of a cluster. After iterating through all combinations of epsilon (0.7-1.5,
increasing by 0.01) and minimum points (1-5, increasing by 1), the highest silhouette score
was 0.3215.

Fig 14: A visualization generated in Matplotlib that graphs the twelve AOIs by longitude and
latitude and separates them by clusters with similar factors and UHI risk.



Fig 15: A bar chart generated in Matplotlib that graphs the mean income values of 5 clusters
identified and noise.



Fig 16: A bar chart generated in Matplotlib that graphs the vegetation and impervious surface
values within the 5 clusters identified and noise.

In comparison to K-means clustering, it can be seen that DBSCAN differentiates within
clusters, allowing identification of low risk areas surrounded by low income areas. By
comparing this to the income data visualization in Fig 4, it can be seen that the clusters
formed align with AOIs where there are mass differences in income. Additionally, cluster 0
has the lowest median income and average income in all of the clusters, and resulted in the
highest mean value of impervious surfaces and lowest values of vegetation (ignoring noise),
aligning with the trend described with Pearson analysis.

We also performed Hierarchical (Agglomerative) clustering algorithms to determine which
AOI locations had the greatest risk of high land surface temperatures and urban heat islands.
Like the previous algorithms, Hierarchical clustering was run on a range of different numbers
of clusters to find the optimum levels and relations of different variables.

Figures 16-18 show the results on different numbers of clusters.



Figure 16- A bar chart generated in Matplotlib that graphs the AOI point coordinates into 2
clusters.

Figure 17- A bar chart generated in Matplotlib that graphs the AOI point coordinates into 3
clusters.



In figures 18 and 19, the results income levels in clusters are shown for 2 and 3 as the number
of clusters:

Fig 18: A bar chart generated in Matplotlib that graphs the median and average AOI income
values within the 2 hierarchical clusters.

Fig 19- Fig 18: A bar chart generated in Matplotlib that graphs the median and average AOI
income values within the 3 hierarchical clusters.

This follows from the trend from the other clustering algorithms in that there is a clear
disparity between income levels of different clusters. The advantage of using 3 clusters is that
there is an additional group for “medium risk”- Cluster 1 - which means that every AOI
location doesn’t need to fall under a binary high or low risk of UHIs.



Figures 20 and 21 validate this wealth disparity as clusters with low incomes have high
impervious surface percentages and low vegetation percentages. In poorer neighbourhoods,
the lack of trees and more impervious surfaces is what causes this higher UHI risk.

Fig 20- A bar chart generated in Matplotlib that graphs the Impervious surface and
vegetations percentages within the 2 hierarchical clusters.

Fig 21- A bar chart generated in Matplotlib that graphs the impervious surface and
vegetation percentages within the 3 hierarchical clusters.

To look at a spread of every variable’s distribution with one another, we generated pyplots
shown in figure 22.



Fig 22: Pyplot distributions of our 4 features for 2 clusters.



Fig 23: Pyplot distributions of our 4 features for 3 clusters.

The highest silhouette score that arose from hierarchical clustering was 0.386 for 2 clusters.
Given this score, we carried out an Anomaly Detection Algorithm to filter out the anomalies
and compare performance. This is shown in figure 24:



Figure 24: Anomaly detection algorithm generated in Matplotlib and applied to all twelve
AOIs.

After filtering out these outliers, the performance of the anomaly detection algorithm
improved to a silhouette score of 0.468 for the 2 clusters.

Discussion
Our results support our original hypothesis because we initially predicted that lower income
and more impervious surfaces would lead to an increase in urban heat island risk.

Some errors may arise in our research due to not having all the GLOBE Observer photos to
cross check the data points with. While there is a wealth of GLOBE Observer data available
in Austin, not all of our AOIs could be matched with their corresponding ground photos,
meaning that some of the impervious surface and greenness percentages used could not be
validated. Additionally, the ECOSTRESS instrument can take LST measurements at different
times of day, so the timing for every LST data point is not entirely consistent, and some LST
data points are completely missing because of cloud cover or instrument malfunction when
they were recorded. Lastly, once the LST data was included, we found that it had limited
correlations with the other factors. This was an unexpected result that contradicted our
hypothesis, in which we guessed that LST would strongly correlate with the other variables,
which is why LST is not present in our graphs comparing our correlations.

In the future, we would like to expand this method to the entire state of California or select
counties due to the area’s vast differences in land surface temperature. LST measurements



within Austin varied minimally, resulting in low correlations with other factors. The coastal
areas and valleys of California and the different income brackets in Los Angeles may provide
more diverse results, which would strengthen our correlations, benefit urban planning, and
help contribute to future ideas on how to decrease the LST discrepancies between different
areas of large cities. We would also want to use supervised learning and have a target variable
in these future analyses.

Conclusion
Ultimately, the correlations that we discovered between land surface temperature, percentages
of greenness and impervious surfaces, median household income, and UHI risk support the
conclusion that socioeconomically disadvantaged areas, usually containing less vegetation
and more concrete and asphalt, are on average at a much higher risk for extreme heat events
resulting from urban heat islands than high-income areas of Austin. We found weak, yet
statistically significant, negative correlations between median income, impervious surfaces,
and land surface temperature, and weak positive correlations between median income and
greenness (see Fig. 9). This means that as median income decreases in an area, the area
typically has less vegetation, more concrete and asphalt, and higher temperatures than the rest
of the city.

Our conclusion is somewhat contradictory in practice due to the fact that low-income
neighborhoods struggle the most with urban heat islands but are the least equipped to protect
themselves from their effects, leaving the most already vulnerable populations in Austin the
most susceptible to heat-related hazards. By publishing this research, we hope to identify
these disadvantaged areas so that urban planners can create targeted strategies on how to
reduce urban heat island risk for the citizens living there.

Extreme heat can lead to the spread of diseases, cause heat stroke, and worsen chronic
illnesses for those most affected (Temperature). It can also create drought and harm crops,
vegetation, and local wildlife, creating a host of economic and ecological issues as well. As
the planet warms exponentially, urban heat islands become even bigger threats to larger
numbers of cities, meaning that their effects must be mitigated before the risk continues to
spread. Our team calls upon local legislatures, urban planners, and other city officials to keep
the variables described in this research in mind when making improvements to the city of
Austin and other cities like it. Planting more vegetation that cools the surrounding area,
keeping this vegetation healthy, and substituting concrete and asphalt for materials that better
release the sun’s radiation could all be ways to keep people living in high-risk urban heat
areas safe and improve the overall health of the city. Sustainability and climate-conscious
initiatives aren’t just for the health of the planet; they are for the health of humans as well.

The experience of completing this research was extremely fulfilling and could not have been
done without the help of our project mentors Grace Valdez, Peder Nelson, Erika Podest,
Cassie Soeffing, Rusty Low, and Andrew Clark. There are many improvements that can be
made on our methods (see “Discussion” for information on possible sources of error),



including using more complete datasets, employing a wider range of satellites, recording
more precise data about data collection times, and gathering more GLOBE photos, and we
hope to see our work expanded in the near future based on the foundations we have set here.

Data Availability
All datasets used in this project can be found in our GitHub repository located at
https://github.com/abhiramraju7/-Predicting-UHIs-with-ML .
Additionally, a copy of our video presentation briefly explaining our process shown at the
SEES 2024 Virtual Science Symposium can be found at
https://drive.google.com/file/d/1bxMNVqxsKrOWAQOOjjTbuoS7zNeVFGpI/view?usp=driv
esdk .
View an explanation of the math process behind the Vincenity formula (see “Data Extraction”
for further details) used in this project at
https://drive.google.com/file/d/1biy8OAmMbeIUrtGraRH21Yi82tAtAx2n/view?usp=drivesd
k .
All land cover data referenced in this paper is made publicly available by and courtesy of
NASA, Collect Earth Online, and the GLOBE Observer program. The GLOBE Observer
database can be found via https://observer.globe.gov/get-data/land-cover-data and the
resources provided by Collect Earth Online are available at https://www.collect.earth/ .
Income data used in this project is courtesy of the United States Census Bureau and can be
located at: https://data.census.gov/,
https://www2.census.gov/programs-surveys/acs/summary_file/2015/data/5_year_by_state/, or
https://www.kaggle.com/datasets/goldenoakresearch/us-household-income-stats-geo-location
s/data.
Land surface temperature data from the ECOSTRESS instrument is sourced from NASA and
requested through the AppEEARS app via NASA EarthData. These data can be accessed at
https://urs.earthdata.nasa.gov .
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IVSS Badges

I WORKWITH A STEM PROFESSIONAL

In this research, we worked with scientist Dr. Erika Podest
from NASA’s Jet Propulsion Laboratory in Pasadena,
California in order to make our research as accurate as
possible. Dr. Podest is well versed in machine learning and
data extraction from satellites - two subjects that we worked
closely with in our project - and was able to give us valuable
tips on how to make our data accessible and how to navigate
the data having holes or being low quality. She gave us more
information about the resolution and performance of ECOSTRESS and gave us a better
perspective on how to properly prepare our research to present to the scientific community.

I AM A COLLABORATOR

We all collaborated as a team from different schools around
the world. Our team consisted of Sophia Myers, Hubery Pai,
Noah Peralez, Abhiram Raju, and Anna Shifman. The report
goes into details of all the contributions of each member.
Working with students from other schools helped our
communication and teamwork skills as we communicated
online and had to face many hurdles with time differences.
We used platforms like Zoom to collaborate online.
Additionally, using all of our diverse skills we have
previously learned helped create a strong team as we all

collectively brought something to the table.

I MAKE AN IMPACT

Our peer mentor, Grace Valdez, is an Austin, Texas native. She
originally came up with our project idea when she observed the
discrepancies between wealthy and poor neighbourhoods in her
community and wanted to conduct research on how to bridge
that gap effectively and improve the health of the environment.
She noticed that low-income neighbourhoods were much less
green and had more tightly packed housing than other areas of
the city, so in the summer, the heat became extreme. As our
team conducted research on the factors that contribute to urban
heat island formation, we identified four variables - percent
greenness, percent of impervious surfaces, land surface

temperature, and median household income - that could be used to make recommendations on
how to mitigate the effects of extreme heat in Austin (for example, planting more trees in
low-income areas to provide more shade, especially in areas with a lot of housing).


