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Abstract—Mosquito habitat ranges are projected to expand
due to climate change. This investigation aims to identify future
mosquito habitats by analyzing the preferred ecological conditions
of mosquito larvae. After assembling a data set with atmospheric
records and citizen-science larvae observations, a deep neural
network is trained to predict larvae counts from ecological inputs.
Time series forecasting is conducted on these variables and climate
projections are passed into the initial deep learning model to
generate location-specific mosquito larvae abundance predictions.
The results support the notion of regional ecosystem-driven
changes in mosquito spread, with high-elevation regions increasing
in susceptibility to mosquito infestation.
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I. INTRODUCTION

Mosquito habitat and breeding ranges have increased glob-
ally [1] [2]. Mosquito habitat preferences are based on the
interaction of several factors, including temperature, humidity,
rainfall, elevation, and availability of hosts. Climate change has
been identified as a key driving factor for the shifts in mosquito
distribution over the past 70 years and is likely to continue to
be the chief determinant of mosquito population spread [1].
According to current trends, climate change will lead to major
shifts in meteorological variables and land cover distributions,
including an increase in average temperature, rising ocean
levels, and increased severity of storms and droughts.

Regional changes in climate has allowed for the expansion
of mosquito populations to new environments. Mosquitoes
bring detrimental vector-borne illnesses, such as the West-
Nile virus and dengue. As warmer temperatures are correlated
with accelerated mosquito development and illness spread, the
necessity to predict potential outbreaks has become a priority
[3].

Mosquito breeding sites require specific ecological condi-
tions. Using habitat patterns such as rainwater pools, riverbed
pools, streams, and marshes in conjunction with meteorological
data allows for the assembly of larvae development models
to forecast conditions that meet the habitable requirements
[4]. Using artificial intelligence, predictions can be scaled
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to adaptable national or global mosquito models to identify
nuanced relationships between atmospheric variables and
mosquito abundance [5]. This investigation harnesses deep
learning to develop a mosquito larvae abundance model and
conduct time series climate forecasting in order to predict
where future infestations of mosquito larvae may occur in the
United States.

Research Overview

The research described in this paper was divided into three
phases. The first phase involved gathering meteorological data
and mosquito larvae counts from various locations in the United
States, and using this data set to create a predictive model
for mosquito larvae abundance. The second phase involved
extracting time-series sequences of the said meteorological
variables from satellites for specific high-risk regions of
interest, to allow for the forecasting of environmental conditions
in these regions. The third phase involved feeding these
environmental predictions into the predictive model developed
in the first phase, to obtain quantitative measurements of
mosquito larvae abundance, and to identify potential breeding
spots for mosquitoes. The following graphic details these phases
of the research process.

Fig. 1: The above flowchart details the sequential objectives
of the research described in this paper. A neural network is
trained, after which climate forecasting creates future inputs
that are passed into the neural network to generate mosquito
abundance predictions.



II. MOSQUITO LARVAE ABUNDANCE MODEL

A. Data Availability Statement

Mosquito larvae abundance data was obtained from the
GLOBE Mosquito Habitat Mapper database, a worldwide
citizen science project supported by the Institute for Global
Environment Strategies (IGES) [6]. Meteorological data was
obtained from the Weather Underground and Weather WX
databases, commercial data providers with historical weather
archives available on the web [7] [8]. Historical time series
sequences were obtained from the Climate Engine tool [9].
Particularly, the Gridded Surface Meteorological dataset (grid-
MET), derived from the PRISM satellite and the NLADS
project, were used for temperature and precipitation records
[10].

B. Data Collection

The GLOBE Mosquito Habitat Mapper database records the
type of water source in which mosquito larvae were observed.
Possible categories include still water, flowing water, and water
containers. Using a GLOBE data processing tool, mosquito lar-
vae observations made from artificial containers (ovitraps) were
filtered and removed to minimize the effect of opportunistic
data on the true population densities of mosquito larvae [11].
This data cleaning process was grounded on the assumption
that the result would be a valid data, as if gathered in the field
for the purpose of analysis, rather than due to opportunistic
circumstances. Larvae counts measured on the same dates in
the same location were also treated as a singular observation.
In each region, the monthly averages of daily maximum, mean,
and minimum temperature, as well as precipitation amount
and days of precipitation, were collected.1 Gathering monthly-
averaged data was a reasonable decision due to the lag time that
has been shown to exist between environmental phenomena
and resulting trends in mosquito abundance [12]. The final data
set was represented by 166 locations across the contiguous
United States, containing the following numerical features:
Average Daily Mean Temperature, Average Daily Maximum
Temperature, Average Daily Minimum Temperature, Days of
Precipitation, Average Daily Precipitation Amount, Elevation,
and Larvae Count.

C. Model Architecture

Due to the non-optimized nature of the GLOBE database,
statistical transformations of mosquito larvae counts were
necessary prior to predictive modeling. Log10 transformation
was applied to the mosquito larvae counts and other variables
were standardized using z-scores.

1Historical data was only available from airports. Mosquito larvae records
from locations with no airports within a reasonable vicinity were excluded.

Fig. 2: Shown above is the architecture of the neural network
used to predict mosquito larvae abundance. The model con-
tained 21,313 parameters.

A deep neural network was assembled for the prediction of
mosquito larvae count. The model contained 6 dense layers with
64 hidden nodes each, followed by an output node. The ReLU
activation function was used between dense layers. Additionally,
dropout layers with a dropout probability of 0.2 were applied
between dense layers to regularize the model. The model was
trained until convergence using Adam optimization, Xavier
weight initialization, and a mini-batch size of 8 examples.

Thirty-five of the oldest data examples were withheld as
validation data to gauge whether the model could backcast
previous mosquito larvae counts from historical ecological data.

D. Model Performance

Fig. 3: The neural network converged on training data but
achieved a moderate positive correlation on historical validation
data. The degree of generalization could be improved with
cleaner and larger data sources.

TABLE I: Model Metrics: Correlations and Their Statistical
Significance

Training Validation

R 0.888 0.489
P 1.26E-45 1.44E-3

The correlation coefficient between training data labels
and model predictions was 0.888. However, the correlation
coefficient between validation data and model predictions was
0.488. In other words, the deep neural network was able
to understand the intricacies of the training data but fell
short when it came to generalizing to unseen data. Though a
moderate positive correlation existed between predicted larvae



counts and ground-truth larvae counts on validation data, there
were numerous instances of large residuals between these
values. In practice, positive residuals are more concerning
than negative residuals, since a negative residual corresponds
to an overestimate of mosquito abundance. This may lead to
extra mosquito-prevention precautions being taken when not
necessary, which is not directly harmful except from a resource-
conservation standpoint. On the other hand, a positive residual
implies an underestimate of mosquito abundance, which could
lead to a false perception of safety. This may lead to vector-
borne disease breakouts due to necessary precautions not being
instituted. The predictions of the deep neural network reveal
more negative than positive residuals, meaning the model
tended to liberally flag locations as containing high mosquito
abundances, when in truth they were of less concern.

III. CLIMATE FORECASTING

A. Time Series Analysis

Temperature and precipitation data for the summer months
between 1979 and 2021 were acquired using the Climate Engine
database for all 48 contiguous US states. Measurements were
averaged spatiotemporally across the 3-month summertime
period from June 22 to September 22 for each state.

Prior to using a Long Short-Term Memory network (LSTM)
for time series forecasting, it was discovered that the trends in
temperature and precipitation somewhat conformed to a pattern
resembling the following periodic function, where T is the
target atmospheric variable given the year t since the initial
year t0.

T (t) = λt− e−αt sin(θt)γtβ + ϕ. (1)

The approximate parameters that can be used to estimate the
trends are as follows:

λ ≈ 0.01, α ≈ −0.01, θ ≈ 0.6, γ ≈ 0.5, β ≈ 0.03, ϕ ≈ T (t0).

This finding confirmed the validity of a supervised deep
learning approach to conduct time-series forecasting.

It was also discovered that minimum and maximum tem-
perature shared a high correlation with mean temperature. In
particular,

Tmin(t) = Tmean(t)− kmin,∀t ∈ {ti}ni=0 (2)

Tmax(t) = Tmean(t) + kmax,∀t ∈ {ti}ni=0, (3)

where kmin is a constant of adjustment between the minimum
and mean temperature and kmax is a constant of adjustment
between the maximum and mean temperature. Hence, the cli-
mate forecasting task for minimum and maximum temperatures
was simplified into the following problem: Find k such that
MAE = 1

n

∑n
i=0 |T (ti) − Si| is minimized, where T (ti) is

the temperature predicted using the corresponding function
above and Si is the true temperature.

B. LSTM Networks

Fig. 4: Shown above are the architecture of the LSTM network
(left) and an illustration of process of time-stepping (right).
For our application, Tx equaled 20 and Tŷ equaled 10. The
model contained 4,682 parameters.

An LSTM network with 32 units followed by a dense layer
was trained on the aforementioned temperature and precipitation
sequences to conduct climate forecasting. The model’s input
length was 20 time steps (corresponding to the past 20 years)
and the output length was 10 time steps (corresponding to
the next 10 years). Dropout regularization with a dropout
probability of 0.2 was applied before the LSTM layer to prevent
overfitting. The model was trained until convergence using the
same specifications as described in Section II-C.

The following algorithm details the process used to generate
future climate predictions, where m is the number of locations,
l is the length of the lookback sequence, p is the length of
the prediction sequence, t is the number of future sequences
(each of length p), f : x → y is a trained LSTM model, X
is the array {[X11 . . . X1l], [X21 . . . X2l], . . . , [Xm1 . . . Xml]},
and Y is the output array.

Algorithm 1 Climate Forecasting Process

Input: X ▷ sequence of m arrays of length l
Output: Y ▷ prediction sequence of m arrays of length p · t

function FORECAST(X)
for i← 0 to m do

x← Xi

Yi ← [ ]
µ← µx σ ← σx

x← x−µ
σ

for j ← 0 to t do
y ← f(x)
y ← y · σ + µ x← x · σ + µ
Yi ← Yi || y
x← x[(p− l) : ] || y
µ← µx σ ← σx

x← x−µ
σ

end for
Y ← Y ||Yi

end for
return Y

end function



Average summer temperature and average daily summer
precipitation amount were forecasted until the year 2050. Then,
maximum and minimum monthly temperatures were derived
from average monthly temperatures using equations 2 and 3.
The monthly days of precipitation for a region could not be
forecasted due to the absence of available data on this variable.
As a result, due to a strong positive correlation between monthly
days of precipitation and average precipitation amount, the
former was predicted from the latter using a linear model.
Elevation changes were not forecasted; future inputs were
simply current mean elevations of each location. These six
variables were then passed into the mosquito abundance neural
network described in Section II-C to predict future mosquito
population abundance.

IV. FUTURE MOSQUITO HABITAT IDENTIFICATION

A. Mosquito Abundance Forecasts

Fig. 5: Larvae Abundance by State in 2050. The above map
displays the model’s projections for larvae abundance colored
on a logarithmic scale.

After conducting climate forecasting for each US state,
mosquito larvae count projections were obtained, displayed
in the choropleth map above. Our results show that by 2050,
the US Mountain states will be likely locations of mosquito
breeding. Namely, Colorado, Utah, Wyoming, and New Mexico
will contain high larvae counts than neighboring Pacific Coastal
states to the west as well as neighboring Great Plains states to
the east. This result is interesting considering the said states
have high elevations, which is an attribute assumed to have low
correlations with mosquito abundance. However, upon closer
look, these projections align with previous research conclusions,
such as those of Derek-Scasta, (2021), who discovered that
some mosquito species exist exclusively in high-altitude regions,
and that changing weather variability could shift some mosquito
species into higher elevations [13].

B. Region of Interest: Texas

Due to this observation, the state of Texas was selected
as a region of interest for further analysis at the regional

level, as Texas contains a steep longitudinal elevation gradient,
ranging from the Rockies to the Gulf of Mexico coast. Climate
forecasting was conducted for each of Texas’s ten climate
divisions.

Fig. 6: Percent Change in Larvae Abundance in Texas Climate
Divisions (2030-2050).

Results for Texas confirmed the patterns observed at the
national level. Namely, the two climate divisions with the
highest elevation, Trans Pecos and High Plains, were projected
to experience the greatest rate of increase in larvae abundance.
To understand how ecological variables were correlated with
this observation, temperature and precipitation were also
mapped, as shown below.

Fig. 7: Meteorological Changes in Texas Climate Divisions
(2030-2050). The above maps show climate forecasts for
precipitation (left) and temperature (right) as a percent change.

Climate forecasting in Texas showed that between 2030
and 2050, precipitation is projected to increase more so in
the eastern portion of the state compared to the southern and
western portions. The opposite trend was observed for mean
temperature. In fact, the western regions of Trans Pecos and
High Plains were projected to experience the highest rate of
temperature increase. The likely relationship between these
two factors and larvae abundance is that warmer temperatures
in western Texas will intensify and prolong drought conditions,
stalling precipitation over the next few decades, while creating
conditions favorable for the habitation of mosquitoes.

C. Analysis of Error

The mosquito larvae abundance model’s inability to general-
ize optimally may have been caused by error in the original



GLOBE Mosquito Habitat Mapper data set. Locations with
high larvae counts were outliers by nature, causing the model’s
threshold between underfitting and overfitting to be very steep,
hence the suboptimal degree of generalization to validation data.
Out of 35 validation data examples, the examples that were
underestimates of mosquito abundance mostly corresponded to
locations where larvae abundance data was scarce. Hence, the
quality of the model could be improved by simply augmenting
the size of the data set, which is feasible in the near future
due to its nature as a citizen science project.

V. CONCLUSIONS

This article aims to predict the abundance of mosquito larvae
across the United States in the year 2050. To achieve this
purpose, a data set consisting of citizen-collected mosquito
larvae counts and several accompanying atmospheric and spa-
tiotemporal variables is compiled. Then, atmospheric variables
are analyzed to identify the conditions most suited to the
habitation of mosquito larvae using a deep learning framework.
Next, these variables are forecasted using an LSTM model to
project future climatic conditions. Finally, these atmospheric
projections are inputted back into the original deep learning
model to obtain the desired predictions.

The results from this experiment support the idea that
mosquito spread is largely location and ecosystem-dependent,
which points out the benefits of utilizing localized citizen-
science observations and conducting regional examinations.
One note of interest was that states along the Rocky Mountain
Range, which contains some of the highest elevations around
the country, were predicted to have the highest larvae abundance
in 2050. This observation was further supported by the case
study of Texas, which predicted the greatest change in larvae
counts to occur in the high-altitude western region. These
results clearly showed that the greatest shifts in mosquito larvae
abundances will occur in high-altitude locales, which is most
likely occurring since the increase in temperature is rendering
high-altitude regions warm enough for mosquito habitation for
the first time. Precipitation and proximity to large bodies of
water, however, did not appear to have a generalized correlation
with larvae abundance, yielding varying larvae counts across the
US. It is likely that unusually large larvae count observations
in regions along the coastline were due to the presence of high
population densities and levels of urbanization rather than due
to the coastal location itself.

These findings point to the need for increased resource
allocation to high-elevation areas to contain mosquito spread
and vector-borne diseases since these locations are forecasted
to become high-risk targets in the future. In addition, because
there is only a meager presence of mosquitoes in high-altitude
regions today, the awareness and containment protocols in these
areas regarding mosquitoes are likely lacking, which may lead
to greater future consequences if no actions are taken.
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