
The NASA-SEES 2021 Summer Internship affords high school students the opportunity to
conduct research that advances Earth science. The SEES Earth System Explorers-Mosquito
Mappers team investigates the relationship between mosquitoes and the environment in
the context of human health. As apparent during Mosquito Mapper fieldwork, manually
counting mosquitoes in a breeding habitat aids in the understanding of mosquito ecology.
Absent a scientific approach, however, manual counts are error-prone and are deemed
questionable for use in mosquito management models. To ensure that these counts inform
meaningful scientific outcomes, the counting process needs optimization. As such, we
explored the feasibility of automating the mosquito count process while minimizing error
using ImageJ, an open-source image processor. To this end, images captured during the
volumetric sampling of mosquito traps and supplemental images obtained from the
GLOBE database were processed using ImageJ. A comparison of the manual and ImageJ
counts revealed that both count types were largely unreliable as the difference between
many of them exceeded a tolerable margin of error, and no count type was consistently
more reliable due to citizen-scientist technique and software limitations. Thus, the results
do not support automation using ImageJ. Rather, they indicate that ImageJ’s performance
depends on the “quality” of the image samples, thereby underscoring the need for
standardized scientific methods in the mosquito counting process. However, it is
improbable that citizen scientists will employ the counting methodologies of expert
scientists since citizen scientists generally prize convenience over validity. An optimal
solution may therefore involve a more robust algorithm that builds on the strengths of
ImageJ and eliminates the citizen-scientist manual count upon integration into the GLOBE
Observer Mosquito Habitat Mapper tool. Although more research is needed to assess the
cost-effectiveness, such a multi-layered solution would assist scientists’ prediction of
mosquito populations and management of mosquito-borne diseases.
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Methodology
Mosquito Habitat
As part of the SEES internship, some interns were required to construct homemade
mosquito traps and conduct experiments to study mosquito oviposition habits, identify
larvae belonging to Aedes, Anopheles, and Culex, and perform source reduction. An intern
from our team assembled three mosquito traps in the natural environment. Over a span of
five weeks, the traps were subjected to the Texas summer heat, heavy rains, and gardening
(Experiment 2 only) and were reset on average every nine days, resulting in four
experiments. The mosquito traps resided in an eco-friendly area of deciduous, broad-leaved
trees, limestone rocks, fertile soil, and manicured and short wild grass (Figure 1). The
container habitats included one six-gallon black bucket and two five-gallon camouflaged
buckets each with surface areas of approximately 616 square centimeters and 573 square
centimeters, respectively (Figure 1). Inside each trap was one rock and one stick collected
from the surroundings (Figure 1). The water occupied 80% of each bucket and was reduced
by 40% for the third and fourth experiments. Scattered across the surface of each bucket,
dog chow attracted the mosquitoes for the first three iterations and was omitted in the last
iteration. At each experiment reset, the water was disposed of and each bucket was
cleaned.

Mosquito Trap Sample
Although we successfully lured mosquitos to oviposit in traps, counting and identifying
mosquitoes proved difficult. Mosquitoes were represented from all stages from eggs to
miniature larvae to adults. The volumetric sampling (Figure 1) technique enabled a rough
estimate of the seemingly innumerable mosquitoes or larvae. With volumetric sampling, the
citizen scientist, instead of manually counting the numerous larvae in each trap, obtained a
representative sample (e.g., 300 mL) from the trap three times. However, it was noticed
that most larvae migrated to the bottom upon disturbance of the habitat, potentially
affecting the count. The images were captured for 33 of the 36 volumetric samples using
either an iPhone 8 or an iPhone X, and counts were recorded. Though this method made
sampling more manageable, estimating the larvae remained tedious and compromised the
accuracy of the count. The mosquitoes were inspected while conducting the sampling and a
small subset from samples were extracted and examined using a clip-on microscope (Figure
1).

GLOBE Sample
Using the “OLD—GLOBE Mosquito Habitat Mapper Metadata” datafile, records with larvae
counts of zero and greater were extracted. The data was then narrowed to those with
water-source images. This process provided fourteen sample images for analysis in ImageJ.

ImageJ Processing
ImageJ is an image processing program used for a variety of purposes. It is used to display,
edit, analyze, and process 8-bit, 16-bit, and 32-bit images. Its extensive application in the
biological science field (Rueden et al.) made it a logical candidate for the mosquito count
automation research project. As such, we downloaded version 1.53a of ImageJ from the
ImageJ website and performed the steps outlined in Figure 2. For each of our 47 sample
images, ImageJ completed the analysis process within minutes.

Results
Mosquito Trap Experiments
There were significant differences in the manual and ImageJ counts across mosquito trap
experiments. The manual counts were mere estimates; some were reasonable, most were
not (Figure 3). The sheer quantity of larvae, the larvae’s dispersal, and a cloudy film that
settled on the surface affected the outcome of the count for Experiment 1. The suspended
debris in Experiment 2 negatively influenced the count. Image processing resulted in a
reliable count for only sample 20 (516 count) in Experiment 3 because the larvae
congregated at the surface with minimal overlapping. By contrast, the manual counts for
the experiment were undercounted. Experiment 4 boasted the greatest accuracy for manual
counts because the quantities were visibly small. The ImageJ count, however, is unreliable
because of the dirt present in the container (Figure 3). It was observed that the manual
count was most reliable when the number of larvae were small. ImageJ's count was most
accurate when the larvae were congregated on the surface without overlapping, when there
was no debris or foliage, when the container was free of dark hues, when there were no
foreign species, and when image quality was strong.

GLOBE Data
The results from the GLOBE Database sample were consistent with our team’s mosquito
habitat data. The manual and ImageJ counts vary. Also, the larvae count in GLOBE and the
ImageJ count appear unreliable for non-container habitats and habitats that lack contrast.
This is reflected in the three spikes in the graph (Figure 4).

Discussion
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Research Questions
Considering citizen-scientist data is an underutilized gem due to its roots in non-scientific
techniques, we seek to overcome this through technology as we attempt to answer: How
can we ensure a reliable count of mosquitoes through automation while minimizing error?
What factors may affect the outcome?

Abstract

While our results partially confirm our hypothesis in that ImageJ is more efficient, the
results contradict the notion that ImageJ’s, when processing citizen-scientist mosquito
habitat images, count is more reliable than the manual count. Recognizing no system is
perfect, ImageJ is unreliable in part because of its sensitivity to haphazard techniques
(Mains et al.). Not even human intervention (e.g., the adjustment of the image threshold)
compensates for this sensitivity. Our research revealed that ImageJ’s performance is
limited to the quality of the inputted data. In the case of our analysis, certain factors –
three-dimensional space, liquid, debris, overlapping larvae, color, mosquito life stage, and
foreign organisms – hindered ImageJ from attaining peak performance. Thus, contrary to
the 95 percent confidence rate ImageJ yielded when counting black flies (Parker et al.), our
results indicated zero percent confidence in ImageJ’s ability to process citizen scientists’
non-standard scientific approach.
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Figure  3. The figure compares manual and ImageJ counts from our mosquito trap data. Each experiment 
included three traps, where three samples were extracted from each trap, except in Experiment 3. 
Innumerable larvae, substantial debris, larvae at surface, and dirt impacted counts in the experiments. 
(N=33)

Figure  4. The comparison of manual and ImageJ counts using data from  GLOBE. (N=14)
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Figure 2. The sequence for processing image samples in ImageJ (version 1.53a) and related screen shot (A).
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Figure 1. Selected images captured from the 
mosquito habitat site used in this study.

Conclusion

Despite ImageJ unsuccessfully automating citizen-scientist mosquito counts, automating
such counts remains possible. One solution devises a methodology that conforms to
ImageJ’s standards. This includes sampling the container habitat; removing all debris,
water, and foreign elements from the sample; spreading the mosquitos onto white printer
paper or in a clear, shallow petri-dish; and photographing the sample for analysis in
ImageJ. Though this methodology should yield a reliable count, this undermines the
efficiency aspect of mosquito count automation since it still relies heavily on citizen-
scientist labor and willingness. Another, more ideal, solution adapts ImageJ’s strengths to
suit citizen scientists’ expectations – efficiency and convenience. This alternative solution
may comprise a robust algorithm that instantly removes extraneous elements from
images en route to deriving a mosquito count within a 5% margin of error; that is easily
integrated into the GLOBE Observer Mosquito Habitat Mapper tool; and that is ultra-
intuitive for the end-user. Some may support ImageJ because the tool has the potential to
significantly reduce the time spent on manual counts. However, employing the tool simply
for this reason overlooks the importance of the upstream methods required for a
successful analysis in ImageJ. Considering this, we recommend, at the most, leveraging
ImageJ instead of an exclusive use, as in its current state it heavily relies on citizen
scientists’ sampling technique mirroring that of an expert scientist’s. Regarding the next
generation of ImageJ (i.e., ImageJ2), it focuses on improving extensibility (a characteristic
that facilitates the creation of macros) and interoperability (compatibility with other tools)
(Rueden et al.). Although these characteristics are integral to a successful count-
automating algorithm, our reservations and recommendations remain since ImageJ2 lacks
the optimal quantification features.

Further research is necessary to determine whether the potential benefits of the
suggestions outlined herein outweigh the costs of implementation, particularly as it
pertains to scientists’ prediction of mosquito populations and management of mosquito-
borne diseases.
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Introduction
Deforestation and urbanization have eliminated traditional vector habitats. As a result,
vectors have evolved to coexist with humans (Little et al.). Thus, a robust vector surveillance
system is needed to mitigate vector-borne diseases. This includes monitoring phenological
cycles through traps and periodically collecting count data. Since quantification is laborious,
scientists have explored avenues to make the process more efficient and reliable. For
example, some have used germination paper, scanners, and ImageJ to quantify mosquito
oviposition. Others have conducted analyses on different subsampling methods, one of
them ImageJ, to determine the method that best predicts the mosquito quantity and
species composition of a larger sample (Jaworski et al.). Recently, to automate the black fly
count, scientists trapped, sorted, and photographed flies before analyzing relevant samples
in ImageJ (Parker et al.).

Though these counting methodologies may be considered efficient and accurate by
professional researchers, citizen scientists, who often prioritize convenience over validity,
are less inclined to employ such procedures. Citizen scientists are needed, however,
because they extend the spatiotemporal footprint of scientists (McClure et al.). Even still,
citizen scientists’ resource constraints are often overlooked in scientific literature.
Considering the importance of their data, although imperfect, we seek to bridge a gap in
hopes of eliminating the citizen-scientist manual mosquito count. Hence, based on
observation and research, we hypothesized that through robust technology (e.g., machine
learning), citizen-scientist images can lead to a more efficient and reliable mosquito count, a
count which informs mosquito management models (McClure et al.). Factors that may
affect the outcome include the software automation and related process, the citizen
scientists’ sampling technique, the identification of targeted specimens, the mosquito
habitat, image quality, and human bias. Through ImageJ (version 1.53a), we investigate the
practicality of automating the citizen-scientist mosquito count while minimizing error and
offer relevant recommendations.

GLOBE IVSS Virtual Badges
Be a Collaborator. The roles ensured individual contributions across multiple sections of
the project. This enhanced the overall quality of our project deliverables. As project
manager and lead author, Nathaniel Boateng was responsible for ensuring the
participation of group members and the completion of project deliverables. Ashwin Roperia
was responsible for producing the team video and developing the Image-J macro, which is
part of the Methods section. As a project reviewer, he provided high-level feedback on

content and presentation. Daniela Cabrales contributed to the Conclusion section and
peer-reviewed others. Her collaborative approach was invaluable to the team. Prayag
Sreenivasan contributed to the hypothesis and peer-reviewed sections throughout the
project. His voice strengthened the project content. Logan Sandell augmented the video
presentation with his unparalleled narration of the Introduction and Experiment sections.
His big-picture view served as another barometer for the team. Micaela Geborkoff, through

her commanding voice, elevated the presentation of the team’s Results. Foluso Osoba
provided an overall review of the team’s slideshow and shared his impressions on ImageJ,
which manifested in the team’s video presentation. Be a Data Scientist. We quantitatively
and qualitatively analyzed our mosquito habitat data, which is the basis of our report. We
supplemented this data with GLOBE data. This enabled us to identify trends across
multiple datasets, address questions, and formulate recommendations, thereby

strengthening our contributions to the scientific discussion. Make an Impact. As noted in
the report, we identified possible areas of improvement in the mosquito counting process.
Acting upon the recommendations herein should positively impact mosquito management
and public health.

Obtain mosquito mapper and GLOBE sample images.

01 RETRIEVE IMAGE

“Drag and Drop” the image into the ImageJ toolbar. Specify the image type 
(e.g., 16-bit),1 which effectively converts the image. Select region of interest (ROI) 
or crop image using the appropriate selection tool (e.g. oval, square)

02 PREPARE IMAGE

“Adjust the threshold” (i.e., contrast) to the value that best reveals the specimen. 
Create a watershed which identifies clustered, non-overlapped areas.1

“Analyze Particles” to count specimen. 1 (A)

03 PROCESS IMAGE

Record the count from the csv file that ImageJ produces. The count is the last 
number in column one and represents the number of targeted specimen the 
image processing tool identified. (A)

04 RECORD COUNT

A

https://docs.google.com/document/d/1tcNJVJVRuXXC_ClRQtFWaUXbkb5f6VXirQdj4U4IE9g/edit

