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Abstract 
 
The NASA-SEES 2021 Summer Internship affords high school students the opportunity to conduct research 
that advances Earth science. The SEES Earth System Explorers-Mosquito Mappers team investigates the 
relationship between mosquitoes and the environment in the context of human health. As apparent during 
Mosquito Mapper fieldwork, manually counting mosquitoes in a breeding habitat aids in the understanding 
of mosquito ecology. Absent a scientific approach, however, manual counts are error-prone and are deemed 
questionable for use in mosquito management models. To ensure that these counts inform meaningful 
scientific outcomes, the counting process needs optimization. As such, we explored the feasibility of 
automating the mosquito count process while minimizing error using ImageJ, an open-source image 
processor. To this end, images captured during the volumetric sampling of mosquito traps and supplemental 
images obtained from the GLOBE database were processed using ImageJ. A comparison of the manual and 
ImageJ counts revealed that both count types were largely unreliable as the difference between many of 
them exceeded a tolerable margin of error, and no count type was consistently more reliable due to citizen-
scientist technique and software limitations. Thus, the results do not support automation using ImageJ. 
Rather, they indicate that ImageJ’s performance depends on the “quality” of the image samples, thereby 
underscoring the need for standardized scientific methods in the mosquito counting process. However, it is 
improbable that citizen scientists will employ the counting methodologies of expert scientists since citizen 
scientists generally prize convenience over validity. An optimal solution may therefore involve a more 
robust algorithm that builds on the strengths of ImageJ and eliminates the citizen-scientist manual count 
upon integration into the GLOBE Observer Mosquito Habitat Mapper tool. Although more research is 
needed to assess the cost-effectiveness, such a multi-layered solution would assist scientists’ prediction of 
mosquito populations and management of mosquito-borne diseases. 
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Introduction 
 
Deforestation and urbanization have eliminated traditional vector habitats. As a result, vectors have evolved 
to coexist with humans (Little et al.). Thus, a robust vector surveillance system is needed to mitigate vector-
borne diseases. This includes monitoring phenological cycles through traps and periodically collecting 
count data. Since quantification is laborious, scientists have explored avenues to make the process more 
efficient and reliable. For example, some have used germination paper, scanners, and ImageJ to quantify 
mosquito oviposition. Others have conducted analyses on different subsampling methods, one of them 
ImageJ, to determine the method that best predicts the mosquito quantity and species composition of a 
larger sample (Jaworski et al.). Recently, to automate the black fly count, scientists trapped, sorted, and 
photographed flies before analyzing relevant samples in ImageJ (Parker et al.). 
 
Though these counting methodologies may be considered efficient and accurate by professional researchers, 
citizen scientists, who often prioritize convenience over validity, are less inclined to employ such 
procedures. Citizen scientists are needed, however, because they extend the spatiotemporal footprint of 
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scientists (McClure et al.). Stated differently, citizen scientists are “boots on the ground” and provide 
“strength in numbers.” Even still, citizen scientists’ resource constraints are often overlooked in scientific 
literature. Considering the importance of their data, although imperfect, we seek to bridge a gap in hopes 
of eliminating the citizen-scientist manual mosquito count. Hence, based on observation and research, we 
hypothesized that through robust technology (e.g., machine learning), citizen-scientist images can lead to a 
more efficient and reliable mosquito count, a count which informs mosquito management models (McClure 
et al.). Factors that may affect the outcome include the software automation and related process, the citizen 
scientists’ sampling technique, the identification of targeted specimens, the mosquito habitat, image quality, 
and human bias. Through ImageJ (version 1.53a), we investigate the practicality of automating the citizen-
scientist mosquito count while minimizing error and offer relevant recommendations. 
 
Methods and Materials 
 
Mosquito Habitat 
As part of the SEES internship, some interns were required to construct homemade mosquito traps and 
conduct experiments to study mosquito oviposition habits, identify larvae belonging to Aedes, Anopheles, 
and Culex, and perform source reduction. An intern from our team assembled three mosquito traps in the 
natural environment. Over a span of five weeks, the traps were subjected to the Texas summer heat, heavy 
rains, and gardening (Experiment 2 only) and were reset on average every nine days, resulting in four 
experiments. The mosquito traps resided in an eco-friendly area of deciduous, broad-leaved trees, limestone 
rocks, fertile soil, and manicured and short wild grass (Figure 1). The container habitats included one six-
gallon black bucket and two five-gallon camouflaged buckets each with surface areas of approximately 616 
square centimeters and 573 square centimeters, respectively (Figure 1). Inside each trap was one rock and 
one stick collected from the surroundings (Figure 1). The water occupied 80% of each bucket and was 
reduced by 40% for the third and fourth experiments. Scattered across the surface of each bucket, dog chow 
attracted the mosquitoes for the first three iterations and was omitted in the last iteration. At each experiment 
reset, the water was disposed of and each bucket was cleaned. 
 
Mosquito Trap Sample 
Although we successfully lured mosquitos to oviposit in traps, counting and identifying mosquitoes proved 
difficult. Mosquitoes were represented from all stages from eggs to miniature larvae to adults. The 
volumetric sampling (Figure 1) technique enabled a rough estimate of the seemingly innumerable 
mosquitoes or larvae. With volumetric sampling, the citizen scientist, instead of manually counting the 
numerous larvae in each trap, obtained a representative sample (e.g., 300 mL) from the trap three times. 
However, it was noticed that most larvae migrated to the bottom upon disturbance of the habitat, potentially 
affecting the count. The images were captured for 33 of the 36 volumetric samples using either an iPhone 
8 or an iPhone X, and counts were recorded. Though this method made sampling more manageable, 
estimating the larvae remained tedious and compromised the accuracy of the count. The mosquitoes were 
inspected while conducting the sampling and a small subset from samples were extracted and examined 
using a clip-on microscope (Figure 1). 
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Figure 1. Selected images captured from the mosquito habitat site used in this study. 
 
 
GLOBE Data Sample 
Using the “OLD—GLOBE Mosquito Habitat Mapper Metadata” datafile (Figure 2), records with larvae 
counts of zero and greater were extracted. The data was then narrowed to those with water-source images. 
This process provided fourteen sample images for analysis in ImageJ. 
 

 
Figure 2. The OLD--GLOBE Mosquito Habitat Mapper Metadata file, representing a population of mosquito 
habitat data, was used to select GLOBE data samples. (N=14) 
 
 
ImageJ Processing: Manual Approach 
ImageJ is an image processing program used for a variety of purposes. It is used to display, edit, analyze, 
and process 8-bit, 16-bit, and 32-bit images. Its extensive application in the biological science field (Rueden 
et al.) made it a logical candidate for the mosquito count automation research project. As such, we 
downloaded version 1.53a of ImageJ from the ImageJ website and performed the steps outlined in Figure 
3. For each of our 47 sample images, ImageJ completed the analysis process within minutes (Figure 4). 
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Figure 3. The manual sequence for processing image samples in ImageJ. 
 
 

 
Figure 4. A completed analysis of an image using ImageJ. The software identified 33 larvae, as shown in the CSV 
file (“Results”). 
 
 
ImageJ Processing: Macro Approach 
During the research process, the team observed that manually executing the steps outlined in Figure 3 for 
each image increased the chance of user error. Consequently, the AutomatedMosquitoCounter macro was 
coded as a more efficient alternative (Figure 5). The macro eliminates several manual steps (Figure 3) and 
essentially requires the end-user to: (1) input the image, (2) capture the region of interest (ROI), and (3) 
adjust the threshold (Figure 6). Over time, this reduces processing time and the potential for user error. 
However, of the remaining manual steps, “Adjust Threshold” is inherently the most subjective and error-
prone. 
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Figure 5. The image shows the installed macro’s location in ImageJ. After the user selects the macro, it runs and 
opens the threshold tab, where the user must adjust the threshold until the specimens are uncovered. Then, the CSV 
file indicating the mosquito count is produced. 
 
 

 
Figure 6. The macro sequence for processing image samples in ImageJ. 
 
 
Results 
 
Mosquito Trap Experiments 
There were significant differences in the manual and ImageJ counts across mosquito trap experiments. The 
manual counts were mere estimates; some were reasonable, most were not (Figure 7). The sheer quantity 
of larvae, the larvae’s dispersal, and a cloudy film that settled on the surface affected the outcome of the 
count for Experiment 1. The suspended debris in Experiment 2 negatively influenced the count. Image 
processing resulted in a reliable count for only sample 20 (516 count) in Experiment 3 because the larvae 
congregated at the surface with minimal overlapping. By contrast, the manual counts for the experiment 
were undercounted. Experiment 4 boasted the greatest accuracy for manual counts because the quantities 
were visibly small. The ImageJ count, however, is unreliable because of the dirt present in the container  
(Figure 7). It was observed that the manual count was most reliable when the number of larvae were small. 
ImageJ's count was most accurate when the larvae were congregated on the surface without overlapping, 
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when there was no debris or foliage, when the container was free of dark hues, when there were no foreign 
species, and when image quality was strong. 
 
GLOBE Data 
The results from the GLOBE Database sample were consistent with our team’s mosquito habitat data. The 
manual and ImageJ counts vary. Also, the larvae count in GLOBE and the ImageJ count appear unreliable 
for non-container habitats and habitats that lack contrast. This is reflected in the three spikes in the graph 
(Figure 8). 
 

 
 
Figure 7. The figure compares manual and ImageJ counts from our mosquito trap data. Each experiment included 
three traps, where three samples were extracted from each trap, except in Experiment 3. Innumerable larvae, 
substantial debris, larvae at surface, and dirt impacted counts in the experiments. (N=33) 
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Figure 8. The comparison of manual and ImageJ counts using data from GLOBE. (N=14) 
 
 
Discussion 
 
While our results partially confirm our hypothesis in that ImageJ is more efficient, the results contradict the 
notion that ImageJ’s, when processing citizen-scientist mosquito habitat images, count is more reliable than 
the manual count. Recognizing no system is perfect, ImageJ is unreliable in part because of its sensitivity 
to haphazard techniques (Mains et al.). Not even human intervention (e.g., the adjustment of the image 
threshold) compensates for this sensitivity. Our research revealed that ImageJ’s performance is limited to 
the quality of the inputted data. In the case of our analysis, certain factors – three-dimensional space, liquid, 
debris, overlapping larvae, color, mosquito life stage, and foreign organisms – hindered ImageJ from 
attaining peak performance. Thus, contrary to the 95 percent confidence rate ImageJ yielded when counting 
black flies (Parker et al.), our results indicated zero percent confidence in ImageJ’s ability to process citizen 
scientists’ non-standard scientific approach.  
 
Conclusion 
 
Despite ImageJ unsuccessfully automating citizen-scientist mosquito counts, automating such counts 
remains possible. One solution devises a methodology that conforms to ImageJ’s standards. This includes 
sampling the container habitat, removing all debris, water, and foreign elements from the sample; spreading 
the mosquitos onto white printer paper or in a clear, shallow petri-dish; and photographing the sample for 
analysis in ImageJ. Though this methodology should yield a reliable count, this undermines the efficiency 
aspect of mosquito count automation since it still relies heavily on citizen-scientist labor and willingness. 
Another, more ideal, solution adapts ImageJ’s strengths to suit citizen scientists’ expectations – efficiency 
and convenience. This alternative solution may comprise a robust algorithm that instantly removes 
extraneous elements from images en route to deriving a mosquito count within a 5% margin of error; that 
is easily integrated into the GLOBE Observer Mosquito Habitat Mapper tool; and that is ultra-intuitive for 
the end-user. Some may support ImageJ because the tool has the potential to significantly reduce the time 
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spent on manual counts. However, employing the tool simply for this reason overlooks the importance of 
the upstream methods required for a successful analysis in ImageJ. Considering this, we recommend, at the 
most, leveraging ImageJ instead of an exclusive use, as in its current state (version 1.53a) it heavily relies 
on citizen scientists’ sampling technique mirroring that of an expert scientist’s. Regarding the next 
generation of ImageJ (i.e., ImageJ2), it focuses on improving extensibility (a characteristic that facilitates 
the creation of macros) and interoperability (compatibility with other tools). Although these characteristics 
are integral to a successful count-automating algorithm, our reservations and recommendations remain 
since ImageJ2 lacks the optimal quantification features. 
 
Further research is necessary to determine whether the potential benefits of the suggestions outlined herein 
outweigh the costs of implementation, particularly as it pertains to scientists’ prediction of mosquito 
populations and management of mosquito-borne diseases. 
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