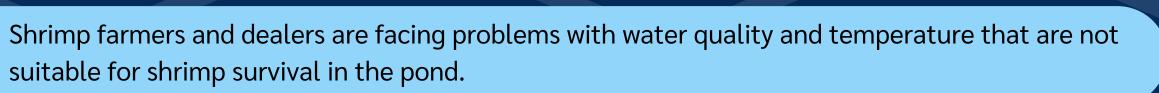


Abstract


Introduction

A Study of the Development of Floating Oxygen-Filling Device in Ponds for Selling Giant Freshwater Prawn (*Macrobrachium rosenbergii de Man*).

Pitiphut Kuaprom, Saranyaphong Inthusophon, Kittipong Jaimertta Advisor : Chumpon Chareesan

The efficiency of the gas delivery pipes was assessed by analyzing the relationship between the amount of oxygen gas and the time received at different lengths of 5, 10 and 15 centimeters. The R² correlation coefficient was used as a measure of this relationship. The analysis revealed a positive correlation between the amount of oxygen gas and the time received from gas delivery pipes of varying lengths. Furthermore, the amount of oxygen gas had the highest R² value of 0.966 with a gas delivery pipe length of 10 centimeters. As a result, a 10-centimeter gas delivery pipe was selected as the optimal floating oxygen-filling device for selling Giant Freshwater Prawns in the pond. In addition, an automatic notification system was developed and combination with a water quality control device in the pond. When testing the prawn in the farmer's pond and the experimental pond with the automatic notification system installed, the experimental pond has DO value was found to be 8.45 ± 0.27 milligrams per liter, and the difference in surface water temperature and underwater temperature was not significant. The water transparency was measured at 0.58 ± 0.00 meters, and only 453.04 grams of prawn death were recorded. In contrast, the pond owned by the farmer had different water quality measurements with a DO value of 8.63 ± 0.33 milligrams per liter, Additionally, a difference of 2.00 ± 0.00 degrees Celsius was seen between the surface water temperature and underwater temperature, accompanied by a diminished water transparency of 0.36 ± 0.00 meters, indicating an increase in water turbidity. Not only that, the death of prawns in this pond was higher at 684.13 grams compared to the experimental pond. Furthermore, it was noted that notifications were dispatched through LINE, and the functioning of the floating oxygen-filling device was monitored up to twelve times per hour.

Part 1

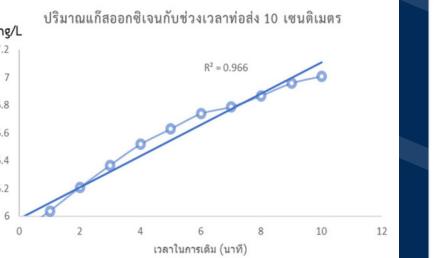
To develop the floating oxygen-filling device and solve the issue of prawn death in ponds awaiting sale.

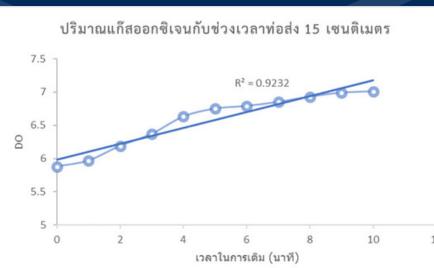
Materials

1. PVC pipe (size 2/3) 2. Clear Plastic Hose 3. small coupler pipe 4. Air pump 5. Hose clamps 6. Bubble diffuser **Methodology**

1. Determination of the study points will be conducted at prawn ponds for the sale of giant freshwater prawns (*Macrobrachium rosenbergii*) in Mueang Kalasin District, Kalasin Province, Thailand.

2. Data collection will be done by measuring water quality including DO, pH, EC, Salt (ppm), and TDS at the experimental site. The results will be recorded.


3. A survey of water quality will be conducted in prawn ponds for the sale of giant freshwater prawns where there are dead prawns. Transportation information will also be collected, including the number of prawns, time, and environmental conditions. The results will be recorded.


Designing a floating oxygen-filling device in ponds for Selling Giant Freshwater Prawns (Macrobrachium rosenbergii de Man).

0

Results

Table 1: Comparison of Water Quality Factors in Fish Tanks Before Sale.

Type of device	DO (mg/L)	рН	Temperature (°C)	EC (µS/cm)	Salt (ppm)	TDS (ppm)	Turbidity (meter)
Normal tank water quality	7.58	7.58	29.32	180.60	134.00	95.00	0.62
Tank water quality with dead fish	4.38	7.90	29.72	172.50	132.00	88.00	0.73
Comparative analysis	*	ns	ns	ns	ns	ns	ns

* = significant difference at P < 0.05 ns = not significantly at P < 0.05

Based on data analysis, it has been found that the efficiency of oxygen replenishment varies with the length of the gas delivery pipe at 5, 10, and 15 centimeters. By analyzing the R² correlation coefficient, it was found that the amount of oxygen gas and the time received from the gas delivery pipes of different lengths were positively correlated and the amount of oxygen gas and the time of the 10 cm delivery pipe had the highest R² value, which was R² = 0.966. Therefore, a 10 cm long gas delivery pipe was selected to be used as a floating oxygen-filling device in a pond for the sale of Macrobrachium rosenbergii de Man, commonly known as Giant Freshwater Prawn.

Designing a floating oxygen-filling device in ponds for Selling Giant Freshwater Prawns (Macrobrachium rosenbergii de Man).

Figure 1: Components of the floating oxygen-filling device.

Figure 2: Installation of clear hose fitting for filling oxygen gas.

Figure 3: Testing different bubble diffuser heads for filling oxygen gas.

Step 1. Cut a PVC pipe to a length of 40 cm. Attach the hose clamps at 10 cm intervals. Then attach the small coupler pipe to the pipe as shown in Figure 1.

Step 2. Cut clear hoses to lengths of 5, 10, and 15 cm, respectively. Install them on the device as shown in the image of Figure 2.

Step 3. Measure the oxygen content in the water before experimenting.

Step 4. Install the device in a test tank with water at a certain height above the ground 10 cm. Turn on the air pump and continuously measure the dissolved oxygen (DO) levels in the water every 1 minute until they stabilize.
Step 5. Using the sandstone head connect it to the air pump and turn it on. Follow steps 3-4 and compare the efficiency as shown in the image of Figure 3.

Part 2 Development of an automatic system for notification and quality control of prawn ponds.

Materials and tools

Temperature sensors (4)
 DO sensor (1)
 220v power cord (1)
 Channel relay (1)
 Jet aerator (1)
 Water circulator (1)
 Breadboard (1)
 Jumper wires (male-to-male and female-to-female) (1 set)
 Automatic system operation

0					
Change State	การแจ้งเตือน (2) 🖣		۹	S	▣
	NE Notify				
	แค้งเตืองเ: ขถเสนี่ ค่า Dissolved Oxygen (DO) ปกติแล้ว				
	แล้งเสือน: ขณะนี้ ค่า Dissolved Oxygen (DO) ในข่อมีค่าต่ำกว่า 7000 µg/L แต่ไม่ต้องห่วง อุปกรณ์ของเรากำลังแก้ไข				
	แล้งเตือน: ขณะนี้ อุณหภูมิบริเวณผิวน้ำและใต้ผิวน้ำต่ างกันมากกว่า 2°C แต่ไม่ต้องห่วง อุปกรณ์ของเรากำลังแก้ไข	1	4.57	ü	

_ □ × & I :	Test results Table 4: Comparison of the performance of oxygen equipment.							
	The Pond	Dissolved Oxygen (DO) (mg/L)	Temperature (°C)	Transparency (m)	Number of dead prawns (grams)			
	Pond using equipment	8.45 ± 0.27	0.00 ± 0.00	0.58±0.00	453.04			
	Ponds that farmers sell	8.63 ± 0.33	2.00 ± 0.00	0.36±0.00	684.13			
	*Number of alerts sent via the Line application: 12 times per hour							
7.14					\bigcirc			

Example of a notification screen on the Line application.

According to the data provided in the table, it was observed that the prawn pond equipped with an automatic alert system, together with water quality control equipment, had a dissolved oxygen (DO) value of 8.45 ± 0.27 milligrams per liter. The temperature difference between the surface of the water and the bottom of the water was not considered significant. The water transparency was 0.58 ± 0.00 meters, and there were only 453.04 grams of dead prawns found. On the other hand, the farmer's pond, which had different water quality, had a dissolved oxygen (DO) value of 8.63 ± 0.33 milligrams per liter. The temperature difference between the surface and the bottom of the water was 2.00 ± 0.00 degrees Celsius, which was higher compared to the equipped pond. Furthermore, the water transparency measure was 0.36 ± 0.00 meters, indicating more turbidity in the water. It was also observed that there were 684.13 grams of dead prawn, which was higher than in the equipped pond. Additionally, it was observed that the machine sent notifications via LINE and was capable of delivering oxygen beneath the water 12 times per hour.

- 1. If the DO value is below 7 milligrams per liter
 - 1.1 The relay will command the aerator to turn on.
 - 1.2 A notification will be sent via LINE that the aerator is running.
 - 1.3 The DO and Temp values will be displayed on a website.
 - 1.4 The status of the pond will be displayed.
- 2. If the DO value is 7 milligrams per liter or higher2.1 The DO and Temp values will be displayed on a website.2.2 The status of the pond will be displayed.

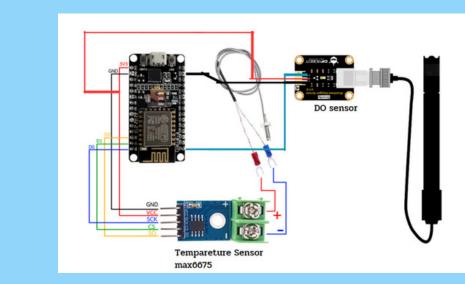


Diagram showing connections in the system.

Testing Procedure

An automatic notification system has been developed to work in combination with water quality control equipment in ponds for the sale of Giant Freshwater Prawn. To test the quality of the automation system and notification system. The test has been designed as follows:

1. Install the automatic water quality control system and notification system in the prawn pond for Giant Freshwater Prawns.

2. Fill the pond with 0.8 cubic meters of water. Check the dissolved oxygen (DO), temperature, and transparency of the water at the surface and bottom of the pond.

3. Release prawns into the pond at a density of 7.5 kilograms per square meter.

4. Leave it undisturbed and check the screen every hour. Record the number of notifications received through the Line Application.

5. After 5 hours, check the number of dead prawns to analyze and compare the data with the pond used by farmers for selling.

The experiment aimed to investigate the amount of oxygen gas and the time from the 5, 10, and 15 cm gas delivery pipes had different oxygen-filling efficiency. By analyzing the R² correlation coefficient, it was found that the amount of oxygen gas and the time received from the gas delivery pipes of different lengths were positively correlated. The amount of oxygen gas and the time of the 10 cm delivery pipe had the highest R² value, which was

 $R^2 = 0.966$. Therefore, a 10 cm long gas delivery pipe was selected to be used as a floating oxygen-filling device in the pond for the sale of Giant Freshwater Prawn. In addition, an automatic notification system was developed in combination with water quality control equipment in the pond for the sale of Giant Freshwater Prawn. When releasing prawns in a pond that farmers sell and a Pond using equipment, it was found that a Pond using equipment achieved a dissolved oxygen (DO) level of $8.45 \pm$ 0.27 milligrams per liter, with no significant difference in temperature at the water surface and the bottom. The water transparency was measured at 0.58 ± 0.00 meters. However, it was observed that the dead prawn rate was 453.04 grams. On the other hand, A pond that farmers sell achieved a dissolved oxygen (DO) level of 8.63 ± 0.33 milligrams per liter, with a temperature difference between the water surface and the bottom of 2.00 ± 0.00 degrees Celsius, which is higher than a pond using equipment. The water transparency was measured at 0.36 ± 0.00 meters, indicating higher turbidity in the water. Additionally, a higher dead prawn rate of 684.13 grams was observed compared to pond-using equipment. Furthermore, it was found that there were 12 notifications sent through the Line messaging app, along with observing the operation of the floating oxygen-filling device.