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1. Abstract

Rapid urban expansion and the proliferation of heat-retaining surfaces such as asphalt and

concrete contribute to elevated temperatures in cities, also characterized as surface urban heat

islands (SUHI). To increase the accuracy of surface temperature machine learning models, key

for urban planning and disaster management, this study harnessed land cover use data collected

by citizen scientists. The data comprised downward photos collected by 2024 NASA SEES Earth

System Explorers interns using the GLOBE Observer app at 958 sites across the U.S. After

labeling for land cover use via Zooniverse, each site was associated with labeled Sentinel-2

satellite data from Collect Earth Online and a mean land surface temperature (LST) Landsat-8

satellite reading for June 2024. Random Forest and XGBoost models were trained in Python on

three distinct datasets – coordinates only, coordinates with GLOBE data, and coordinates with

GLOBE and Collect Earth Online data – to develop predictive models for LST. Following

Bayesian optimization with 10-fold cross-validation, Random Forest displayed R2 accuracies of

0.84, 0.78, and 0.79, respectively. XGBoost displayed R2 accuracies of 0.82, 0.80, and 0.82,

respectively. While incorporating land cover data failed to improve predictive accuracy,

improving data collection methods and ensuring higher quality data could reveal the true value of

citizen-sourced land cover data. This research supports a deeper understanding of the complex

relationship between land cover and LST, potentially aiding urban planners in mitigating SUHI

effects and fostering community engagement in scientific research.
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1.1 Plain Language Summary

This study looks at how cities are getting hotter than surrounding areas because of more concrete

surfaces, like buildings and roads, and fewer types of cooling vegetation, like trees and bushes.

To better predict city temperatures around the world for urban planning and disaster

management, researchers used information about land cover collected by citizen scientists –

volunteer members of the public who contribute to scientific research. In 2024, NASA Earth

System Explorers virtual interns took ground photos at 958 locations around the world using the

GLOBE app. Citizen scientists helped classify the photos by labeling the different land cover

types on the ground, such as grass or concrete. Interns matched the photos with satellite imagery

taken in the same location, which citizen scientists labeled for land cover. The interns used this

data to test two machine learning models and see if adding land cover information would

improve temperature predictions compared to GPS coordinates alone. However, results from the

model revealed that adding more land cover information did not improve its predictions, which

could be explained by our data collection methods. This research aims to better understand how

land cover affects temperatures and how communities can engage in scientific research.
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2. Introduction

2.1 Research Question

This study aims to utilize Citizen Science to create a machine-learning model trained to

predict land surface temperatures. This research question was addressed using GLOBE Observer

down photos in conjunction with Landsat-8 data used to train two machine learning models. The

hypothesis is that incorporating vegetation data and Collect Earth Online data into the machine

learning models with coordinate data would provide greater accuracy for predicting land surface

temperatures.

The citizen science used in the research is GLOBE observer data collected by the Earth

System Explorer group of the 2024 STEM Enhancement in Earth Science Summer High School

Intern Program. Citizen Science is the act of the public completing design experiments,

collecting data, analyzing results, and solving problems. Individuals of any background can

contribute and offer an opportunity for the public to become involved in issues in their

community (National Park Service, 2024).

This paper utilized GLOBE Observer data to understand land surface temperatures of

surface urban heat islands all over the United States and parts of Switzerland and India. Urban

heat islands are a global issue that contributes to global warming and the rise of land surface

temperatures. This research used Adopt a Pixel 3 km framework to create land cover data for a 9

km2 plot of land from multiple locations in the GLOBE Observer mobile app (Low et al., 2021).

In addition, the coordinates of the land covers used in the data were further analyzed based on

vegetation in Collect Earth Online and Zooniverse with the aid of other interns in the program.
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2.2 Background Information

Urban heat islands are developed areas indicated by comparatively higher land surface

temperatures than surrounding areas. These areas pose a risk to children, seniors, and sick people

as heat influxes can lead to health issues, including respiratory problems, heat cramps, and

exhaustion. Moreover, heat influxes on urban heat islands will require cities to consume more

electricity to cool down systems and infrastructures. This creates an unsustainable cycle that

needs to be addressed. This phenomenon can be attributed to the abundance of heat-absorbing

impervious surfaces and changes in their radiative and thermal properties (Kasniza Jumari et al.).

This study primarily focuses on surface urban heat islands. They can form at any time

throughout the day and night, and they vary in severity due to numerous factors; the spatial

distribution of different surfaces greatly impacts the land surface temperatures. For example,

impervious surfaces such as asphalt, concrete, and brick absorb heat rather than reflect due to

their high thermal storage capacity, resulting in high temperatures. In addition, reduced

vegetation in cities also contributes to urban heat islands, as dramatically low evapotranspiration

levels cannot counteract high surface temperatures. Anthropogenic heat originating from car

exhaust and industrial areas can also contribute to urban heat islands (McCartney, 2023).

With substantial increases in population growth and movement into urban centers, it is

becoming more important to understand how the temperature increases caused by SUHIs can be

mitigated and how land cover plays a part in reinforcing or reducing such temperature

fluctuations. Many major cities are currently experiencing urban heat islands and their negative
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effects. According to a study by Kasniza Jumari et al. (2023) in Kuala Lumpur, Malaysia,

temperatures in select urban and rural areas varied from 10.8 and 25.5 °C in 2013 to a staggering

16.1 and 26.73 °C in 2021. This illustrates the increase in urban heat islands and land surface

temperature. If not mitigated, these numbers will continue to climb to reach devastating levels. In

the same study, it was determined using remote sensing from the Landsat 8 satellite that using

more vegetation and less heat-absorbing materials to design urban centers can mitigate the onset

of urban heat islands.

2.3 Literature Review

This literature will explore the methodologies and applications of land surface

temperature (LST) prediction, highlighting the integration of citizen science and machine

learning (ML) techniques. This review sets the foundation for this study, which aims to enhance

LST prediction models by using citizen-sourced land cover data and advanced ML techniques.

2.3.1 Existing Methods of LST Prediction

Various methods have been developed using remote sensing and ML techniques to

predict LST. Das and Ghosh (2014) provide Multifractal Detrended Fluctuation Analysis as an

effective method for LST prediction, offering nuanced insights into temperature variations. Their

results demonstrate the method’s potential to find the simple process underneath the larger

complex patterns through the theory of fractals, which is crucial for accurate predictions.

Bhattacharjee et al. (2020) also introduce spatio-temporal semantic kriging, which they intend to

use to address the issues of missing pixels, line drops, and cloud cover. Their results demonstrate

that this method, along with incorporating land use/land cover data, produces more accurate LST

predictions than other spatio-temporal interpolation methods. This validates the importance of
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land cover data in predicting LST. However, despite these methods to compensate for missing

data, integrating additional data sourced via citizen science could help fill these gaps.

2.3.2 Citizen Science in Environmental Research

Citizen Science (CS) has emerged as a vital component in environmental research,

offering non-professional participants to contribute to data collection and scientific advancement

(Fraisl et al., 2022). CS applications span various fields, including biodiversity monitoring, land

cover assessment, and climate change studies. This approach offers numerous benefits such as

cost-effectiveness and increased temporal frequency of data collection (Dickinson et al., 2012;

Fritz et al., 2017). However, CS faces challenges related to data quality, participant engagement,

and ethical considerations in data sharing (Fraisl et al., 2022). Despite these challenges, CS has

demonstrated its potential to provide valuable calibration and validation data for the observation

of Earth (Fritz et al., 2017). When coupled with advanced analytical techniques like ML,

integrating these rich CS data sets can significantly enhance environmental predictions.

2.3.3 ML in Environmental Prediction

Recent studies have explored machine learning techniques for improving LST prediction.

In one such study by Arunab and Mathew (2024), the incorporation of comprehensive spatial

information (such as land cover, among many others) into Random Forest and XGBoost models

has shown promise in enhancing LST forecasts, with errors within +2°C. Other studies that

focused on specific types of models show the effectiveness of integrating diverse datasets and

advanced machine learning techniques. For example, the study by Rengma and Yadav (2023)

found that a framework using Random Forest with spectral indices and terrain parameters

achieved high accuracy (R2 = 0.89, RMSE = 0.74°C) in LST prediction. A study by Pande et al.
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(2024) found that ensemble models combining XG-Boost, Bagging-XG-Boost, and AdaBoost

have demonstrated superior performance in LST forecasting, with Bagging ensemble achieving

an R2 of 0.75. Knowing this, combining the strengths of CS and ML offers a promising approach

for more accurate and reliable LST prediction models.

2.4 Community Relevance

Due to the increasing abundance of urban heat islands and their negative effects, it is

imperative to understand the scope of the increasing land surface temperature in select areas

across the globe. By creating a machine learning model to predict land surface temperatures,

researchers, climate activists, and the public can interpret the extent of the negative effects of

urban heat islands. By raising concerns backed by accurate and refined predictive machine

learning models, mitigation methods can be enacted to lower land surface temperatures down to

levels appropriate for the Earth and its inhabitants. Communities that are predicted to experience

unusual and significant spikes in land surface temperatures can incorporate restorative measures

to reduce those temperatures.

3. Methods and Materials

3.1 Study Site

Directional photos (North, South, East, West) along with zenith (upward) and nadir

(downward) were captured using the GLOBE Observer mobile application by the 2024 NASA
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SEES Earth System Explorers intern group. These were collected at 37 distinct sites in a 3km x

3km grid for each intern, totaling 1740 photos. As interns were remote, study sites spanned the

entire globe, although most were concentrated within the United States. Figure 1 displays the

distribution of these sites on an ArcGIS map.

3.2. GLOBE data extraction and Zooniverse processing

Downward directional (“down”) photos were extracted using the GLOBE API following

data collection. After filtering for image quality and availability, 958 sites were deemed fit for

analysis. These images were subsequently exported to a Zooniverse project for labeling with the

help of citizen scientists; for each downward photo, citizens were given 11 possible choices for

land cover as shown in Figure 3, with the option to multi-select. Each image

was presented a minimum of three times to citizen scientists before being

retired from the dataset to ensure robust data collection. The compiled

Zooniverse data was exported to a CSV using a probability distribution for
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each land cover option, where each category was represented by the proportion of annotators that

selected it. For instance, if 2 out of 3 annotators selected “Bush/Scrub” for a given photo, the

input feature for that photo included 0.67. Photos tagged with “Unclear / Other” or “Not a down

photo” were manually reviewed by the research team and, if needed, removed from the dataset.

3.3 Land Surface Temperature Data Retrieval

After Zooniverse data exportation, daily mean land surface temperature (LST)

measurements in Kelvin were retrieved via the Google Earth Engine methodology developed by

Ermida et al. (2020). These measurements were extracted using 30 m multispectral bands from

NASA’s Landsat-8 satellite. Temperatures at the coordinates for each image site were found for

June 2024, using the first available Landsat-8 temperature reading for a given site after June 1.

These temperature readings, which align with the month in which images were captured, also

reflect the peak SUHI effects during summer, which are characterized by extended daylight

hours and pronounced temperature disparities between urban and rural settings.

3.4 Collect Earth Online Data Collection and Processing

Interns additionally labeled the land cover of Sentinel-2 satellite imagery at each of their

37 sites using the Collect Earth Online (CEO) platform, where a grid of 100 points was

generated at each site. Users selected the land cover type for each point from a preselected menu

of 13 options: Trees - Canopy Cover, Shadow, Bush/Scrub, Unknown, Grass, Bare Ground,

Cultivated Vegetation, Building, Water - lake/pond, Water - river/stream, Water - irrigation ditch,

Impervious Surface, or Wetlands. This process quantified land cover distribution; for instance, a



11

site with 86 points labeled as “Bare Ground” was considered to have 86% bare ground coverage.

This data was aligned with the closest GLOBE down photo within a 100 m radius.

3.5 Data Preprocessing

Data preprocessing involved removing irrelevant attributes, such as email addresses,

which do not provide information about land cover use. Missing values were addressed by

imputing the mean for each column using the Python scikit-learn library to ensure the

consistency and comprehensive use of available data points. Ultimately, 26 columns remained in

the dataset. These columns include Impervious Surface, Grass, Dead Vegetation, Bare Ground,

Cultivated Vegetation, Bush/Scrub, Water (river), Water (lake), and various specific land cover

elements from Collect Earth Online such as Water (irrigation ditch), Grass, Water (rivers/stream),

Impervious Surface (no building), Wetlands, Water (lake/ponded/container), Cultivated

Vegetation, Bare Ground, Building, Trees -Canopy Cover, Unknown, Bush/Scrub, Shadow, and

Land Surface Temperature (LST). Figure 5 depicts a summary of the processes involved in

creating the final dataset.
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3.6 Machine Learning Model Training

Following data preprocessing, Random Forest and XGBoost models were trained using

three distinct datasets: the first containing only land surface temperature (LST) and site

coordinates (latitude and longitude); the second incorporating the aforementioned elements along

with Zooniverse-labeled land cover data for GLOBE Observer photos; and a comprehensive

dataset that included all previously mentioned elements along with data from Collect Earth

Online. The models trained on each dataset are denoted as Model 1, Model 2, and Model 3,

respectively. Models were trained using a 90:10 train/test split. Subsequently, K-fold

cross-validation was performed with 10 splits to evaluate the performance of each model. Code

from the NASA ARSET - Fundamentals of Machine Learning for Earth Science training was

used as a reference.
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Metrics analyzed included individual feature importances, R-squared values, root mean

squared error (RMSE), and mean absolute error (MAE). These metrics are widely used to

evaluate machine learning regression models because they provide useful information as to how

the model’s predictions differ from predicted values (Hodson, 2022). R-squared (R2), which

ranges from 0 to 1, measures the variation in predicted and actual values in a regression model:

R2 = (Chicco et al., 2021). RMSE is calculated as the average of1 − 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (𝑆𝑆𝑅)
𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆𝑇)

the squared differences between predicted values and actual values: RMSE =
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initial base models, a Bayesian Search was conducted to find the optimal hyperparameters for

each model.

4. Results and Data

4.1 Raw GLOBE Observer Data

The 958 “down” images collected using the GLOBE Observer App were generally robust

and suitable for analysis, barring occasional quality issues such as blurring and improper angles

which were manually screened out through Zooniverse. Many images contained the presence of
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people or feet, a category that was ignored when training the model. Figure 6 provides examples

of photos used in Zooniverse analysis:

4.2 Zooniverse and Collect Earth Online Data

All 958 images (“subjects”) were successfully tagged a minimum of three times by

Zooniverse volunteers, for a total of 3,115 classifications. Additionally, 21 out of 46 interns

completed Collect Earth Online (CEO) data labeling for each of their 37 sites. Due to incomplete

data on the CEO platform and discrepancies in photo-site proximities, only 180 out of 437 rows

in the dataset were matched with associated CEO data. Rather than omitting labeled GLOBE

photos that lacked Collect Earth Online land cover data, columns were kept blank to maximize

dataset utility.

4.3 Processed Data in Random Forest Model

From our Random Forest models, decision trees were developed to visualize our results

in a reduced size and showcase example procedures of a prediction based on each evaluated
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feature that held the highest feature importance. Three visualizations were created to reflect three

different cases of training dataset size to compare the model’s prediction accuracy. Figure 7

displays Model 1 that incorporates only coordinate data. Figure 8 displays Model 2 that

incorporates GLOBE data alongside coordinate data. Figure 9 shows Model 3 that incorporates a

comprehensive dataset (coordinates, GLOBE data, and CEO data).
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As the models begin at the root node, the respective feature is assessed and the tree splits

as it moves down. When it reaches the leaf nodes (where it terminates), the squared error is at its

minimal threshold. The “squared_error” label represents the mean squared error (MSE) in

degrees Kelvin between the actual LST value and predicted LST value. The “samples” label

represents how many data items are used within that node. However, it’s important to remember

that the number of samples represented in the root node of each single decision tree doesn't

necessarily incorporate the overall dataset size as a result of each tree being trained on a

bootstrap sample (repeated resampling data with replacement). The “value” label represents the

predicted LST.

Using Figure 9 as an example of making a prediction within the decision tree, it is clear

how certain features contribute to an increase in urban heat islands and therefore resulting in

higher LST. In this case, let’s assign values to each variable for modeling purposes: Latitude =

37, Impervious Surface (no building) = 25.3, and Trees-Canopy Cover = 10. The example

scenario begins at the root node and evaluates as “True” as Latitude ≤ 40.6, prompting the model

to evaluate further with the Impervious Surface (no building) feature. This evaluates as “False”
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as our given value of 25.3 does not satisfy Impervious Surface (no building) ≤ 14.7. Thus far, it

is apparent that this decision has impacted the predicted LST value. In the context of this feature,

when a value is greater than the threshold of 14.7, this indicates that there is a higher presence of

impervious surfaces which directly correlates with higher LST values because these areas are

known to absorb heat. As the model continues to the next node, it evaluates as “True” as

Trees-Canopy Cover ≤ 21.5. This decision leads to the leaf node and the final prediction value to

be 312.4 K. Having a low abundance of canopy tree cover results in lower evapotranspiration

levels which can’t counteract high surface temperatures, increasing the overall predicted LST

value. If the Trees-Canopy Cover had a value higher than the threshold of 21.5, the predicted

LST value would result in approximately 3 K lower compared to the final prediction given that

there is a low density of that specific feature. The same evaluation process can be applied to each

model which can determine how each feature affects the predicted LST value based on the

surrounding areas.

Shown in Table 1, the root mean squared error (RMSE) in degrees Kelvin, mean absolute

error (MAE) in degrees Kelvin, and R-squared values were calculated for each of the three

Random Forest models trained on different datasets. Before hyperparameter tuning, preliminary

versions of Model 1 (coordinates only), Model 2 (coordinates and GLOBE data), and Model 3

(coordinates, GLOBE data, and CEO data) were trained for baseline performance metrics.

Table 1. Baseline evaluation metrics for three Random Forest models before tuning.

Dataset R2 RMSE (K) MAE (K)

Model 1 0.84 2.66 2.02
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Model 2 0.80 2.84 2.13

Model 3 0.82 2.66 2.01

Subsequently, a Bayesian Search was performed to obtain optimal hyperparameters for

our model using the following parameter distributions:

param_space = {

'n_estimators' : (10, 1000),

'max_depth: (3, 50),

'min_samples_split' : (2, 10),

'min_samples_leaf': (1, 10),

'max_features': ('sqrt', 'log2')

}

Bayesian Search was performed with 10 folds through 100 iterations. Below are the optimal

hyperparameters for Model 1:

params = {"max_depth": 47, "max_features": "log2",

"min_samples_leaf": 2, "min_samples_split": 2, "n_estimators": 739}

The optimal hyperparameters for Model 2:

params = {"max_depth": 19, "max_features": "log2", "min_samples_leaf":

1, "min_samples_split": 2, "n_estimators": 1000}

The optimal hyperparameters for Model 3:

params = {"max_depth": 30, "max_features": "log2", "min_samples_leaf":

1, "min_samples_split": 2, "n_estimators": 328}
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Bayesian Search was able to slightly improve the evaluation metrics for both Model 1, as

listed in Table 2. However, performance metrics decreased for both Model 2 and Model 3, which

could potentially result from noise in the dataset or overfitting based on training data.

Table 2. Evaluation metrics for the Random Forest model for each of the three datasets tested
following optimization via Bayesian Search.

Dataset R2 RMSE (K) MAE (K)

Model 1 0.84 2.49 1.89

Model 2 0.78 3.00 2.30

Model 3 0.79 2.97 2.25

The dataset including only latitude/longitude (Model 1) had the highest performance for

our limited sample size, as evidenced by the highest R-squared value and the lowest RMSE and

MAE values. The accuracy of Model 2 increased slightly when Collect Earth Online data was

incorporated with GLOBE vegetation data (Model 3), suggesting that detailed spatial and

vegetation data could provide a more nuanced understanding of LST variations. Interestingly,

while the inclusion of CEO data improved model performance compared to GLOBE data alone,

it did not surpass the model that relied solely on geographic coordinates.

4.4 Processed Data in XGBoost Model

Three separate XGBoost models were trained using three different datasets, akin to the

methodology employed during Random Forest Training. Before performing any hyperparameter
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tuning, a preliminary version of all three models was trained and evaluated to obtain baseline

performance metrics (see Table 3).

Table 3. Baseline evaluation metrics for three XGBoost models before tuning.

Dataset R2 RMSE MAE

Model 1 0.75 3.10 2.36

Model 2 0.77 3.34 2.59

Model 3 0.80 2.90 2.13

To obtain optimal hyperparameters for each model, a Bayesian Search was performed using the

following parameter distributions:

param_space = {

'learning_rate': (0.01, 0.3, 'uniform'),

'max_depth': (3, 50),

'subsample': (0.1, 1.0),

'min_child_weight': (1, 10),

'eta': (0, 1),

'alpha': (0, 10),

'lambda': (0, 5),

'gamma': (0, 10)

}

The search was performed with 10 folds through 100 iterations. The optimal hyperparameters for

Model 1:

params = {"objective": "reg:squarederror",
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"learning_rate":0.0990999161353275, "max_depth": 3, "min_child_weight": 10,

"subsample": 1, "lambda": 5, "gamma": 0, "alpha": 5, "tree_method":"exact",

"eta":0}

Model 2:

params = {"objective": "reg:squarederror", "max_depth": 3, "lambda": 5,

"alpha": 0, "tree_method": "exact", "eta": 1, "gamma": 10, "learning_rate":

0.14107739445372014, "min_child_weight": 10, "subsample":

0.4931393217397809}

Model 3:

params = {"objective": "reg:squarederror", "max_depth": 3, "lambda":

1, "alpha": 0, "tree_method": "exact", "eta": 0, "gamma": 0,

"learning_rate": 0.09447565846479973, "min_child_weight": 10,

"subsample": 1.0}

The Bayesian search was able to moderately improve the output of each model, as shown in

Table 4.

Table 4. Evaluation metrics for all XGBoost models following optimization via Bayesian Search.

Dataset R2 RMSE (K) MAE (K)

Model 1 0.82 2.86 2.26

Model 2 0.80 3.00 2.36

Model 3 0.82 2.87 2.24

Interestingly, Model 2 showed the greatest increase in performance following

optimization with a decrease in RMSE of 0.34 K, a 0.03 increase in R2, and a 0.23 K MAE

decrease. Conversely, Model 3 saw the smallest performance increase with an RMSE decreasing
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by 0.03 K and R2 increasing by only 0.02 points. Overall, performance trends here are similar to

those from the Random Forest models; Model 2 underperforms compared to Model 1 despite

having more features for each sample. Notably, the addition of the CEO data results in a double

digit decrease in MAE, along with a 0.13 K decrease in RMSE. This is interesting considering

only 41% of samples had complete CEO data. To examine the comparative importances of

features from each dataset, we used the F-score metric to create a bar graph of the 17 most

important features used in Model 3:

From Figure 10, we can deduce that the most important features (following longitude and

latitude) are “Impervious Surface” and “Grass”, from GLOBE Observer and Zooniverse

Labeling, followed by “Trees / Canopy Cover” and “Buildings” from Collect Earth Online
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labels. The least used features (excluding zero-values) are “Cultivated Vegetation”, “Unknown”,

and “Bush / Scrub”.

5. Discussion

5.1 Interpretation

Regardless of model, the addition of GLOBE Observer data resulted in a decrease in

predictive power in Model 2. The noise in this dataset is most likely due to the quality of the

labels assigned to the nadir photos via Zooniverse. Specifically, the labels did not contain

quantitative information; participants were simply asked to select all the land cover types that

applied to each ground image. It is possible that quantitative labels representing the proportion of

each land cover type in each nadir image would not cause the same performance decline that was

observed here.

It is interesting that the addition of the CEO data resulted in such a marked improvement

in predictive performance, despite only 41% of samples having complete CEO data. This is

suggestive that CEO land cover data is a much better predictor of LST than GLOBE Observer

nadir image labels; it would be interesting to see how the models perform with even more

samples with complete CEO labels.
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Additionally, Random Forest models performed slightly better than their XGBoost

counterparts across all dataset sizes. This could be due to Random Forest generally performing

better on noisy data, leveraging the outputs of multiple decision trees to determine a final

prediction. It would be valuable to explore the predictive capabilities of a Random Forest model

with an expanded dataset.

Considering the relatively high feature importance of the three highest Collect Earth

Online labels, we can assume that greater use of Collect Earth Online labels across all samples

would moderately improve accuracy across both models. It would be equally prudent to remove

the least important GLOBE Observer features from Zooniverse labeling to allow participants in

the survey to more accurately assign quantitative labels to more relevant features.

5.2 Evaluating the Hypothesis

Due to the results of the study, the hypothesis has been rejected for the Random Forest

Model because incorporating GLOBE and CEO data to the machine learning models decreased

accuracy of the models. However in the XGBoost model, the hypothesis failed to be rejected as

the accuracy remained the same in Model 1 and Model 3. In the Random Forest with Bayesian

search, the highest R2 value at 0.84 (84% accuracy) was observed in Model 1, which contained

only coordinate data. The XGBoost models with Bayesian search achieved a R2 value of 0.82

(82% accuracy) in models 1 and 3. Model 1 was solely coordinate data, model 2 had additional

GLOBE Observer data, and model 3 had additional Collect Earth Online Data. This suggests that

running a model with coordinate and Collect Earth Online Data will garner the highest accuracy.
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In addition, the Random Forest model was most accurate overall, achieving an R2 value

of 0.84 for Model 1 in the runs both with and without the Bayesian Search. This indicates that

the Random Forest model may be more accurate to predicted land surface temperatures with

regards to vegetation in urban heat islands.

5.3 Comparison to Similar Studies

Our research is similar to other studies to utilize the land cover tool in the GLOBE

Observer application, machine learning models, and vegetation data. A study by van Jaarsveld et

al. (2024) incorporated GLOBE multi directional images into a Random Forest model in order to

create reliable information regarding high resolution vegetation drought impacts. This is just one

of many scientific studies that use machine learning with citizen science, satellite data, and land

cover data.

5.4 Errors

A major source of error in the study’s methodology was the focus only on “down”

photos. The land cover displayed in one photo of the ground often does not display the full

picture of an area’s land cover. For instance, urban construction zones can have small patches of

grass on the ground, or a pond on the ground may be surrounded by a forest. Incorporating

imagery from all six directional photos—north, south, east, west, zenith (upward), and nadir

(downward)—into a future model would likely provide a more comprehensive, accurate

depiction of land cover variations.

Some sources of error in this study also stem from the application of citizen science into

the models. Although citizen science is accessible and can be filtered to only garner qualifying
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data from larger datasets. There is a certain level of accuracy from the data sources that cannot

be confirmed by researchers. Any images collected or Collect Earth Online classifications made

are created upon the discretion of the data source and cannot be completely verified by the

researchers, contributing to minor faults in the dataset that cannot be detected since there was a

large amount of data.

Another error in this study was the lack of adequate data from all the participants of the

2024 SEES Earth System Explorers team. In further detail, it could be said that with more

GLOBE Observer down photos and Collect Earth Online classifications, the models could have

been trained to a more accurate state. There were only 958 down photos from 1,702 possible

locations. The number of viable down photos further decreased due to quality control and other

data available to 437 down photos. If all of the down photos were taken and had adequate data,

the machine learning models would have been more precise.

6. Conclusion

6.1 Significance and Application

Although the incorporation of land cover data failed to improve predictive accuracy, our

team concluded that this was due to a lack of quality data rather than the usefulness of the data

itself. Improving data collection methods and ensuring higher quality data could potentially

reveal the true value of citizen-sourced land cover data. This study particularly sheds light on the

value of Citizen Science. While previous studies have utilized satellite readings to develop

predictive models for LST, such as an analysis of the Dhaka metropolitan area using Landsat
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imagery, none have explored the application of citizen-sourced imagery on a global scale (Faisal

et al., 2021).

Through the GLOBE Observer app, anyone can download the GLOBE Observer

application to document land cover in their local communities. Both the Zooniverse platform and

Collect Earth Online platform also provide free, accessible mechanisms for the public to label

citizen and satellite-sourced images. When citizen-sourced data is merged with forms of remote

sensing analysis, such as satellite data from Landsat-8 and Collect Earth Online, this enriched

data set could significantly enhance model accuracy. Furthermore, involving citizens in

collecting and labeling land cover data is a key component of open science that could be used to

empower global change (Fraisl et al., 2022). The participatory approach used in this study

encourages individuals to engage with issues of climate change and urban sustainability as they

contribute to meaningful research.

6.2 Improvements to Study

Some improvements could be made to the study’s methodology to improve the output of

both models. Firstly, the small sample size (437 samples) contributed to the variance that is

present in both Random Forest and XGBoost models. Similarly, it would be useful to include

GLOBE Observer images that satisfy the “Snow/Ice” condition and could potentially improve

the performance of both models in low-temperature environments. Currently, the models are only

able to predict LST in moderate climates during the spring and summer seasons. This is a result

of the narrow variety within the data on which the models were trained.
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Moreover, there was a significant difference in quality between GLOBE Observer photos.

Several samples contained photos which were blurry; excessively magnified; or not true nadir

photos. This made it difficult to accurately determine and label the true land cover of each

sample. Any incorrect labeling would also contribute to the uncertainty in the predictions

provided by the models. Additionally, an inherent challenge with any program relying on the

built-in GPS receiver on a user's device is spatial accuracy (Low et al., 2021). GPS sensor

readings can be inaccurate, especially with older devices, and some photos taken by SEES

interns had a reported accuracy of over 30 m. Future studies would benefit from adopting stricter

rules regarding the quality of observations used from the GLOBE Observer database.

Furthermore, many samples lacked their respective CEO land cover labels. This would

have significantly increased the number of features available for each sample, potentially

improving the predictive power of both models and mitigating bias during training. One

suggested improvement would be to take more time for data collection to ensure all samples

have their respective CEO labels and GLOBE Observer land covers.

Additionally, this study would benefit from more detailed land cover observations

compared to the labeling carried out in the Zooniverse project for this study. A better alternative

would be similar to the land cover observations done within the GLOBE Observer app itself,

where participants choose which categories of land cover apply to the image and then select the

percentages of land cover (out of 100) that apply to a given image. This approach would be

advantageous for model training, providing more detailed insight into the composition of each

nadir photo.
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6.3 Future Work

This study has opened several avenues for future research into the use of Citizen Science

to predict LST. Building on these findings, future studies could investigate the use of pre-trained

Convolutional Neural Networks to extract relevant features from down photos and train models

using the provided feature vectors, as opposed to manual labeling. This would allow for the use

of a much larger sample size, as images would be interpreted in code as opposed to manual

labeling. This would also allow for the use of North, South, East, and West-facing directional

photos, potentially providing more features to enhance the predictive power of a future model.

The land cover observations that accompany directional photos in GLOBE Observer could also

be extracted and used to train the model, serving as an alternative to manual Zooniverse labeling

of ground photos.

Future research could also explore the use of samples from a more diverse array of

geographical locations. Samples from colder climates and from a wider range of elevations

would enhance the predictive performance of the models on unseen data. Currently, models have

not been trained with samples of LSTs below 290 K (17˚C). There is significant possibility for

research to expand the capabilities of both models to include sub-290 K samples.

6.4 Mentor Impact

Our research project was heavily influenced by the guidance of our mentors: Andrew

Clark, Russanne Low, Peder Nelson, Cassie Soeffing, Ollie Snow, and Riya Tyagi. Rusty

provided knowledge about the principles of citizen science, allowing us to cross-validate our data
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to ensure our findings were reliable and scientifically sound. Peder introduced us to GIS software

such as Zooniverse and Collect Earth Online, improving our data labeling and categorization.

Cassie advised us on effectively communicating our research goals. Andrew introduced us to

ORCiD and open data concepts. Riya and Ollie served as our peer mentors. Riya provided

technical advice on using AI models for the project, while Ollie helped with image labeling

details on Collect Earth Online. Their combined efforts made this project possible. We extend

our thanks to each of them for their contributions.

Datasets and Code

All datasets and code can be found at https://doi.org/10.5281/zenodo.12984362.
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